
CLARKSON UNIVERSITY

A Critic for API Client Code using Symbolic Execution

A Thesis by

Chandan R. Rupakheti

Department of Electrical and Computer Engineering

Submitted in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

Electrical and Computer Engineering

May 2012

c©Chandan R. Rupakheti 2012

Accepted by the Graduate School

Date DEAN

The undersigned have examined the thesis entitled A Critic for API Client Code

using Symbolic Execution presented by Chandan R. Rupakheti, a candidate for the

degree of Doctor of Philosophy, Electrical and Computer Engineering and hereby certify

that it is worthy of acceptance.

Date

EXAMINING COMMITTEE

Dr. Susan Conry

Dr. Christopher Lynch

Dr. Jeanna Matthews

Dr. Robert Meyer

ADVISOR Dr. Daqing Hou

ii

Abstract

It is well-known that APIs can be hard to learn and use. To cope with difficulties in using

APIs, programmers browse the Internet for code samples, tutorials, and API documenta-

tion. In general, it is time-consuming to find relevant help from the plethora of information

on the web. While search tools may help programmers find code snippets, novices often

have difficulty in formulating a useful search query and in assessing the quality and rele-

vancy of the search results. To help address the broad problems of finding, understanding,

and debugging API-based solutions, this thesis presents a new kind of critic system called

CriticAL (A Critic for APIs and Libraries) that offers recommendations, explanations,

and criticisms for API client code.

CriticAL takes API usage rules as input, performs symbolic execution to check that the

client code has followed these rules properly, and generates advice as output to help improve

the client code. While several past studies have focused on answering why frameworks are

hard to learn and use, very few have provided systematic data that can be used directly

in building such a tool. We conduct a manual case study of 150 discussion threads from

the Java Swing forum and derive a set of framework rules that can be directly used in

API tooling efforts of CriticAL. We show that there are recurring patterns in problems the

programmers face while using the Swing framework that can be supported through CriticAL.

We were able to capture the nature of the recurring patterns precisely as API usage rules.

We demonstrate the usefulness of CriticAL by applying it to real-world examples derived

from the Java Swing Forum and through a formative user case study.

iii

Acknowledgements

I am indebted to the support and guidance of my advisor, Dr. Daqing Hou. He taught

me how to conduct research. He showed me how to write research articles. He guided me,

inspired me, and brought the best in me. I thank him from the bottom of my heart. Special

thanks go to Dr. Christopher Lynch, Dr. Christino Tamon, Dr. Jeanna Matthews, Dr.

Susan Conry, and Dr. Robert Meyer for their guidance and constructive comments on the

thesis and for their help with my academic career.

I want to dedicate this thesis to my loving grandmother Annapurna Rupakheti and to

the loving memory of my grandfather Giri Raj Rupakheti who would be proud and happy

to see the first Ph.D. in his family. I am blessed to have a wonderful family who taught

me to work hard under every circumstance. I thank my mom (Chanda Sharma), my dad

(Chandrika Prasad Rupakheti), and my brother (Chetan Raj Rupakheti) for their love and

support. I am fortunate to have whom I consider the most beautiful woman in the world

as my fiancée. She has endured me and motivated me through all of the ups and downs in

my life in the last 8 years. Thank you Manila for your love, affection, and friendship.

Finally, thank you all of my friends at Software Engineering Research Laboratory (Patri-

cia Deshane, Ferosh Jacob, Cheng Wang, Yuejiao Wang, Xiaojia Yao, Lin Li, Dave Pletcher,

Lingfeng Mo, Siyuan Bao, Tiantian Zhao, and Ying Zhang) for sharing your lives with me

in the lab and making school a fun-filled learning experience.

iv

List of Publications

Publications that contributed directly or indirectly to this thesis:

1. C. R. Rupakheti, D. Hou, Evaluating Forum Discussions to Inform the Design of an

API Critic, In Proceedings of IEEE International Conference on Program Compre-

hension (ICPC), June 2012, 10 pp. (to appear).

2. C. R. Rupakheti, D. Hou, CriticAL: A Critic for APIs and Libraries, In Proceedings

of IEEE ICPC, June 2012, 3 pp. (to appear).

3. C. R. Rupakheti, D. Hou, Finding Errors from Reverse-Engineered Equality Models

using a Constraint Solver, April 2012, 10 pp., (submitted for peer review).

4. C. R. Rupakheti, D. Hou, EQ: Checking the Implementation of Equality in Java,

In Proceedings of IEEE International Conference on Software Maintenance (ICSM),

September 2011, pp. 590-593.

5. C. R. Rupakheti, D. Hou, Satisfying Programmers’ Information Needs in API-Based

Programming, In Proceedings of IEEE ICPC, June 2011, pp. 250-253.

6. C. R. Rupakheti, D. Hou, An Abstraction-Oriented, Path-Based Approach for Analyz-

ing Object Equality in Java, In Proceedings of IEEE Working Conference on Reverse

Engineering (WCRE), October 2010, pp. 205-214.

7. C. R. Rupakheti, D. Hou, An Empirical Study of Design and Implementation of Object

Equality in Java, In Proceedings of Center for Advanced Studies on Collaborative

Research Conference (CASCON), ACM, October 2008, pp. 111-125.

8. D. Hou, C. R. Rupakheti, H. J. Hoover, Documenting and Evaluating Scattered Con-

cerns for Framework Usability: A Case Study, In Proceedings of IEEE Asia-Pacific

Software Engineering Conference (APSEC), December 2008, pp. 213-220.

v

Contents

1 Introduction 1

1.1 Motivating Examples . 4

1.1.1 Case 1: Application of CriticAL in Reuse-based Development 4

1.1.2 Case 2: Gentle Introduction to the Use of Symbolic State 8

1.2 Contributions . 12

1.3 Overview of the Thesis . 13

2 Case Study 15

2.1 Motivation . 15

2.2 Research Method . 16

2.3 Criticisms . 19

2.3.1 API Criticism Rules . 20

2.3.2 Case 1 (Orphan Objects, Content Mismatch, Missing Constraints) . 23

2.3.3 Case 2 (Parent Switching, Positioning and Sizing) 25

2.3.4 Case 3 (Dynamic GUIs) . 26

2.3.5 Case 4 (Content Mismatch, Positioning and Sizing) 27

2.3.6 Case 5 (Table Design, Resizing Conventions) 28

2.4 Explanations . 29

2.4.1 Behavior of Null Layout . 30

2.4.2 Centering Behavior of GridbagLayout 30

2.4.3 Resizing Behavior of BorderLayout 31

vi

2.4.4 API Specific Explanations . 31

2.5 Recommendations . 32

2.5.1 Generic Recommendations . 32

2.5.2 Syntax-Based Recommendation . 33

2.5.3 State-Based Recommendations . 34

2.6 Discussion . 35

2.7 Threats to Validity . 36

2.8 Conclusion . 37

3 The Design of CriticAL 38

3.1 Architectural Overview of the Core . 39

3.2 Modeling Symbolic Objects . 41

3.2.1 Modeling Non-Primitive Types . 42

3.2.2 Modeling Primitive Types . 42

3.2.3 A Completeness Argument . 43

3.3 Interpreter . 44

3.3.1 Translation of Expressions . 44

3.3.2 Symbolic Execution Environment . 44

3.4 Execution Semantics . 48

3.4.1 Identity Statement . 48

3.4.2 Assignment Statement . 50

3.4.3 Executing Invoke Expressions . 55

3.4.4 Return Statements . 57

3.4.5 If Statement . 57

3.5 A Glimpse at the Constraint Solving Module 60

3.6 Unrolling Loops . 62

3.7 Maximal Sharing Strategy . 62

3.8 Non-Escaping Newly Created Objects . 66

3.9 Conclusion . 69

vii

4 Extending CriticAL 70

4.1 Overview of the Extension Process . 70

4.2 Creating an Extension Plugin Project . 72

4.3 The serl.critic.swing Package . 72

4.4 The serl.critic.poi Package . 75

4.5 The serl.critic.types Package . 77

4.6 Supporting Listeners . 82

4.7 Action-Based Critiquing . 85

4.8 Supporting Static API Methods . 85

4.9 A Generalizability Argument . 85

5 Evaluation 90

5.1 Formative Study . 90

5.1.1 Methodology . 91

5.1.2 Subjects . 92

5.1.3 Observation and Results . 92

5.1.4 Lessons Learned . 94

5.2 Evaluation of CriticAL on Users’ Programs 96

5.2.1 Evaluation of Performance . 96

5.2.2 Evaluation of Utility . 98

5.2.3 Reason for False Positives . 101

5.3 Efforts in Implementing API Rules . 105

5.4 Conclusion . 105

6 Related Work 107

6.1 Study of the API-Usability Problem . 107

6.2 API Critic . 108

6.3 Related API Tools . 109

6.4 Symbolic Execution . 110

viii

6.5 Static Analysis . 112

6.6 Dynamic Analysis . 113

6.7 Program Verification . 113

7 Conclusion and Future Work 115

7.1 Conclusion . 115

7.2 Future Work . 116

7.2.1 Extending Swing Support . 116

7.2.2 Conducting A Summative User-Case Study 116

7.2.3 Testing Generalizability of CriticAL 117

ix

List of Algorithms

1 Cloning an Execution Environment, clone : Ψ→ Ψ. 64

2 Cloning a Symbolic Object, clone : Ψ× S → S. 67

x

List of Tables

1.1 Symbolic states for the program of Figure 1.5(a). 10

2.1 List of helpful criticisms discovered in the forum (D: Direct, I: Indirect, T:

Total). The Return on Investment (ROI) is calculated by dividing the total

number of helped cases by the total number of rules. 22

2.2 List of helpful explanations discovered in the forum. (D: Direct, I: Indirect,

T: Total) . 30

2.3 Classification of recommendations discovered in the forum. 32

5.1 Summary of the formative user study conducted on Clarkson’s students. . . 95

5.2 Performance evaluation of CriticAL on code from the forum and tutorials. . 97

5.3 Evaluation of Criticisms. (Note that * represents the rule that has been

added on top of Table 2.1.) . 100

5.4 Summary of Explanations. 101

5.5 Summary of Recommendations. 101

5.6 Analysis of False Positives. (C: Criticism and R: Recommendation) 101

xi

Listings

1.1 The user’s code resulting in the JFrame of Figure 1.2(b). 7

2.1 JPanels sharing the same layout manager. 21

2.2 Code for Case 1 (modified). 23

2.3 Patch for Lisitng 2.2. 24

2.4 Case 2 (Parent Switching Positioning and Sizing). 25

2.5 Dynamic GUIs (modified). 27

2.6 A JWindow that violates size constraints. 27

2.7 A table implemented using multiple containers (modified). 28

2.8 Using GridBagLayout where FlowLayout suited better. 35

4.1 Code for choosing entry points in the extension plugin. 73

4.2 The ICheckPoint Interface. 76

4.3 IResult and ICritic Interfaces. 78

4.4 Implementation of the symbolic JFrame class. 79

4.5 Implementation of SwingFactory. 80

4.6 Fields that model the state of JFrame and JComponent. 81

4.7 The ICallbackPoint Interface and the symbolic JButton class. 84

4.8 The JComponentAbstraction Class. 88

4.9 Action-based recommendation for confusing APIs. 89

4.10 Support for a static method in the symbolic Box class. 89

5.1 Content mismatch between a JPanel and its layout manager. 94

5.2 An entry point problem. 102

xii

5.3 A loop unrolling problem. 103

5.4 A problem due to an unsupported API method. 105

xiii

List of Figures

1.1 Role of our critic system in API-based programming. 3

1.2 User requirement and achieved solution. 4

1.3 CriticAL helping a programmer build the Swing application shown in Fig-

ure 1.2(a) using a JFrame. 5

1.4 Eclipse’s content assist showing alignment related methods. 8

1.5 CriticAL helping a programmer build the Swing application of Figure 1.6(b). 9

1.6 Current GUI produced by Figure 1.5(a) and the desired GUI. 11

2.1 Classification of 150 Swing Forum discussion threads. D: directly helpful to

an OP’s core problems; I: indirectly helpful; A: most likely helpful. A thread

helped by multiple critiques of the same kind is counted only once. Since a

thread may be helped by more than one kind of criticism, recommendation,

and explanation, the total number for critiques is more than 117. 18

2.2 JFrame in Listing 2.2 before and after the fix for orphan widgets. 24

2.3 Listing 2.2 before and after the patch for missing constraints. 25

2.4 The JFrame in Case 2 (Listing 2.4). 26

2.5 The view of JWindow before and after the fix. 28

2.6 Table design achieved using three BoxLayouts. 29

3.1 The plugin architecture of CriticAL and its major components. 39

3.2 Architecture of our critic system. 40

3.3 Jimple IR and CriticAL’s counterparts. 45

xiv

3.4 Translation semantics of Jimple expressions to CriticAL expressions. 46

3.5 Path conditions generated for the IfStmt containing open symbolic objects. 58

3.6 Illustration of Algorithms 1 on a sample code. 65

3.7 Stepwise illustration of running Algorithms 2 on a sample code. 68

4.1 A typical structure of an extension plugin project, an XML settings file, and

the IFactory interface. 74

4.2 The order in which CriticAL executes the check() method of each POI. . . 75

4.3 The type hierarchy of the core, the Swing extension plugin, and the Swing

API. 80

4.4 Code showing the use of an action listener in a JButton. 82

5.1 Design of a tax form. 91

5.2 Execution trace of CriticAL on code from the forum and tutorials. 99

xv

Chapter 1

Introduction

Behind each Application Programming Interface (API) is a system that offers proven solu-

tions for a set of common problems in some domain. The API facilitates the access to such

a system so that new systems can be built on top of it. To be effective in using the API,

one must learn enough of the domain, its problems and solutions, and how to map between

them appropriately. For a system of rich functionalities with a large problem and solution

space, learning its API can be a substantial endeavor [33,34,48].

Past studies on API usage have elicited three fundamental challenges in reuse based

development [17,31,33,34,43,49]:

1. finding the right API elements for the programming task,

2. understading their use to achieve the desired goal, and

3. debugging the client code that uses them.

Due to time pressure and an urge to solve problems quickly, many programmers prefer to

learn API’s on demand and learn by doing. That is, they try to learn just enough of an API

so that they can solve the current task. While search-based tools partially help solve the first

problem, novices still face a significant challenge in using such tools especially when they

lack the knowledge of the framework’s design to formulate the right search queries [33,41].

In general, a reuse-oriented system may not be used in the best possible ways that it

1

is originally designed for. Instead, users often settle with a suboptimal set of available

solutions that are just enough for their current tasks [17]. To address this problem, Fischer

envisions an architectural design for a development environment that encompasses such

tools as visualization, explanation, recommendation, and critics, to help programmers work

with the framework and APIs [17].

The kind of environments that Fischer proposes are aimed at helping bridge the gap

between the situation model and the system model. The situation model is a programmer’s

mental model about the task or problem needed to be solved, and it is often imprecise and

informal. The system model, on the other hand, is about the actual running system. The

system model is precise and formal, and can be expressed by such technical artifacts as

source code that a machine can understand and execute, and design documentation.

In translating a problem in the situation model to a solution in the system model,

a programmer may face several challenges. Given a problem, the programmer may not

know whether a solution is possible and what process he needs to follow to create the

solution. When there are multiple possible solutions, he may not know which one suits

his situation the best. Finally, a programmer may make mistakes in executing a complex

solution procedure.

When the novice starts writing code with only limited knowledge of the API, his or

her solution is often incorrect or suboptimal. It would be ideal to engage a human expert

for help, but experts are scarce or have limited time. To help, this thesis presents a critic

system 1 [20,53–55] that can advise the novice online while the code is being written in his

development environment. More specifically, it can

1. explain the interactions of multiple API elements,

2. criticize the improper use of the API, and

3. recommend other relevant API elements for future use.

1The CriticAL project (A Critic for APIs and Libraries) can be found at http://sf.net/p/critical.
All URLs verified on May 3, 2012.

2

http://sf.net/p/critical

Requirements
Prospec0ve
Solu0ons

Reused System
•  Source Code
•  API Documenta0on
•  Tutorials
•  Online Forums

API Rules
+

Documenta0on

Par0al/Subop0mal Solu0on
•  What should I use?
•  What causes problems?

Cri0c System
Based on Symbolic

Execu0on

API Novice

System Expert
Op0mal Solu0on

1 2

3

4 5

Consumed By Produces Used By

Figure 1.1: Role of our critic system in API-based programming.

Figure 1.1 depicts the current state of practice for API-based programming and the

role of a critic system in the overall API usage scenario. In the literature, a computer

program that critiques human-generated solutions is called a critic [59]. Critics have been

successfully applied in clinical medicine management, engineering design, word processing,

and software engineering. Our API critic is expected to help bridge the long-standing

information gap between API designers and application programmers, and thereby increase

the quality of the novice’s code, as well as move him or her toward being an expert.

As shown in Figure 1.1, our critic system requires a set of API usage rules and associated

documentation to explain these rules. The API rules specify special program states for which

advice should be produced. A human expert who has substantive experience with the API is

responsible for producing the rules. The system symbolically executes API client code [40].

Based on the resulting symbolic program states as well as its knowledge of API usage rules,

the system generates contextual advice for the programmer’s code. It is expected that

with multiple interleaved rounds of coding and critiquing, the system would incrementally

3

(a) Desired design. (b) Alignment problem.

Figure 1.2: User requirement and achieved solution.

direct the programmer toward a correct and optimal solution. Hence, such a system has a

potential to bridge the long-standing information gap between the API designers and the

application programmers.

1.1 Motivating Examples

In this section, we will present a high-level overview of CriticAL with the help of two

motivating examples. The first example will show the application of CriticAL in reuse-

based development using the Java Swing API 2. The second example will illustrate the

symbolic execution mechanism used by CriticAL also using the Swing API.

1.1.1 Case 1: Application of CriticAL in Reuse-based Development

Learning to Use the API

Consider a novice programmer wanting to learn the Java Swing API and undertaking the

problem of designing the Graphical User Interface (GUI) shown in Figure 1.2(a). Let us

assume that he does not know much besides that there is a JFrame class that he could use

to make the window. This is a sound assumption as there are Swing forum users with such

problems, e.g., 3 4. Figure 1.3(a) shows that the user manages to create an empty JFrame

object in the Eclipse IDE and probably with the help of its content assist, sets the title of

2http://docs.oracle.com/javase/tutorial/uiswing/
3https://forums.oracle.com/forums/thread.jspa?messageID=5768843
4https://forums.oracle.com/forums/thread.jspa?messageID=5848584

4

http://docs.oracle.com/javase/tutorial/uiswing/
https://forums.oracle.com/forums/thread.jspa?messageID=5768843
https://forums.oracle.com/forums/thread.jspa?messageID=5848584

CriticAL's Help Button

Markers for Critiques List View for Critiques

(a) CriticAL Plugin in Eclipse IDE with the user's code

(b) Context menu showing a criticism of the user's code at line 6. Each critique has a short tool-tip description.

(c) Context menu showing an explanation.

(d) Context menu showing a recommendation.

(e)
Each critique also has
a detailed description
that can be accessed
by clicking on the
menu item in the
context menu. This
particular document is
associated with the
recommendation
shown in (d).

Clicking on this link will highlight line 6 on the editor

Users can navigate to relevant online documents from within the IDE

. . . Rest of the document elided

Clicking on this menu item opens up the detailed view of (e)

Figure 1.3: CriticAL helping a programmer build the Swing application shown in Fig-
ure 1.2(a) using a JFrame.

5

the window and then gets stuck as he does not know what to do next. Starting from such a

preliminary stage, CriticAL will come to his aid by guiding him through the coding process,

where it will read his code and provide critiques to help him achieve the desired solution

iteratively within the IDE.

The user presses the help button of CriticAL (Figure 1.3(a)) after getting stuck. Equipped

with the rules and documentation for the Swing framework, CriticAL symbolically executes

the user’s code and finds that the JFrame object is missing some of the important proper-

ties in the execution path, which triggers some of the critiquing rules. Figure 1.3(a) shows

markers for those rules in line 6.

The user right-clicks over the marker to get the context menu as shown in Figure 1.3(b).

The context menu lists all of the criticisms, explanations, and recommendations made

by CriticAL for the given line number. On hovering over each of the menu items under

Critiques, CriticAL displays a short tool-tip message describing the critique. In this case,

Figure 1.3(b) shows a tool-tip for the criticism generated due to the violation of the rule

that a top-level GUI widget if initialized, must eventually be visible. Figure 1.3(c) shows the

explanation generated when the default layout manager of the content pane of the JFrame is

used instead of the user-configured one. Figure 1.3(d) shows the recommendation generated

when the content pane of a JFrame is empty. When the user clicks on a menu item, CriticAL

opens a detailed view showing the description of the problem with code snippets as well

as links to the related online documents. In this case, Figure 1.3(e) shows the detailed

document for the recommendation of Figure 1.3(d). Hence, the user can now learn about

JFrame and BorderLayout and even copy-paste the code snippet on the editor.

Using the API

Let’s assume that the user now understands how to use JFrame and BorderLayout and

produces the code as shown in Listing 1.1. Nevertheless, when he runs the code, he gets

the window shown in Figure 1.2(b) where the label is aligned at the left. If he uses

Eclipse’s content assist (Figure 1.4), he finds that the setAlignmentY(float) method

6

Listing 1.1: The user’s code resulting in the JFrame of Figure 1.2(b).� �
1 // Initialize a frame and other components
2 JFrame frame = new JFrame(‘‘A Test’’);
3 JPanel panel = (JPanel)frame.getContentPane();
4 JLabel lbl = new JLabel(‘‘Enter a paragraph’’);
5 JTextArea textArea = new JTextArea(4,15);
6 JButton button = new JButton(‘‘Save it!’’);
7 // Add components to the content pane
8 panel.add(lbl, BorderLayout.PAGE START);
9 panel.add(textArea, BorderLayout.CENTER);

10 panel.add(button, BorderLayout.PAGE END);
11 // Compute the frame’s size and display
12 frame.pack();
13 frame.setVisible(true); 	� �

could be used to align components horizontally but to no avail. He further gets confused

when he discovers that there are two more methods with similar sounding functionalities

viz. setHorizontalAlignment() and setHorizontalTextPosition() and none of their

Javadocs communicate a proper usage scenario. CrticAL would again help him by recom-

mending a document that explains their behavior and the situation where each of them suit

better as follows:

• setAlignmentX() and setAlignmentY() of JComponent used with parameters such

as TOP ALIGNMENT and CENTER ALIGNMENT. They are used to position widgets in a cell

of a BoxLayout.

• setHorizontalAlignment() and setVerticalAlignment() of JLabel and JButton

with parameters such as LEFT and CENTER. They are used to align the content of a

widget within itself.

• setHorizontalTextPosition() and setVerticalTextPosition() of JLabel and

JButton with parameters such as LEFT and TOP. They are used to align the text

within a JLabel and a JButton relative to their icon image.

After reading this document, the user would insert lbl.setHorizontalAlignment(JLa-

bel.CENTER) in line 7 to finally get the desired GUI of Figure 1.2(a). Note that this iterative

7

Figure 1.4: Eclipse’s content assist showing alignment related methods.

process of providing contextual recommendations is a rather ambitious goal and we do not

claim that we have completely achieved it. We recommend bits and pieces that each may

serve a particular moment in a long programming process. To achieve this ambitious goal,

the tool needs to adapt to the different level of expertise and provide sufficient coverage.

Nevertheless, these recommendations are useful. The basis for these recommendations are

the normal way of using the API and occurrence of similar problems in the Swing forum,

which we will discuss in Chapter 2. The cost of recommending in these cases is minimal

because these recommendations passively appear as a marker in the IDE and do not interfere

with the user’s regular programming, but the benefit can be substantial.

1.1.2 Case 2: Gentle Introduction to the Use of Symbolic State

To illustrate the three forms of advice (explanation, recommendation, and criticism) that

our critic can produce through symbolic execution, consider this message copied from the

Swing Forum 5:

Please help me, how to use the Grid layout. In my code i have to use Grid layout

I have to print the 4 labels in one row. and 4 textfields in the next row [to make]

a table.

Figure 1.5(a) shows the code mentioned in the above message (for presentation, sim-

plified to contain only two labels and two textfields). Figure 1.6 shows the GUI that the

current code produces as well as the desired GUI. Using CriticAL for help, the programmer

may press the CriticAL button as shown in Figure 1.5(a). As a result, CriticAL symboli-

cally executes the code to create the states of the program, which are shown in Table 1.1.

5http://forums.oracle.com/forums/thread.jspa?messageID=5737802

8

CriticAL's Help Button

Critiques

a

c

d

b

Figure 1.5: CriticAL helping a programmer build the Swing application of Figure 1.6(b).

9

Table 1.1: Symbolic states for the program of Figure 1.5(a).

Line # Facts that hold after line # for symbolic objects

14

example.parent = null
example.layout = FlowLayout()
example.lblTotalRepairs = JLabel(...)
...
example.button1 = JButton(...)

15

frame.title = “This is the window”
frame.visible = false
frame.contentPane.children = []
frame.contentPane.layout = BorderLayout()
frame.contentPane.layout.properties = []

16 frame.contentPane.layout = BorderLayout()

22 example.layout = GridLayout(2,2)

28
labelPanel.children = [lblTotalRepairs, lblRepeatRepairs]
fieldPanel.children = [totalRepairs, repeatRepairs]
buttonPanel.children = [button1]

29
frame.contentPane.children = [fieldPanel]
fieldPanel.parent = frame.contentPane
frame.contentPane.layout.properties = [CENTER:fieldPanel]

30 frame.visible = true
frame.defaultCloseOperation = HIDE ON CLOSE
labelPanel.parent = null
buttonPanel.parent = null
example.parent = null

Our critic checks the program states against API use rules to infer the current status of

the program as well as the programmer’s intents and goals, and to offer advice. Generated

advice is presented as markers on the ruler of the text editor (the left-hand side of Fig-

ure 1.5(a)), indicating that CriticAL has critiques (E: Explanation, R: Recommendation,

and C: Criticism) for the code at the corresponding lines.

Explanation

The facts holding in program states can be used to help the programmer understand why

the program exhibits a certain behavior. For instance, CriticAL finds that a component

is added to the center location of the BorderLayout that manages the content pane (line

10

(a) Current GUI (b) Desired GUI

Figure 1.6: Current GUI produced by Figure 1.5(a) and the desired GUI.

29, Table 1.1). On hovering over the explanation marker (line 29, Figure 1.5(a)), CriticAL

presents a tool-tip description explaining that the added component will grow with the

window as the window is resized. Although IDE’s also explain individual API elements by

showing Javadoc comments, they do not explain the interaction of multiple API elements.

Note that a criticism and a recommendation may also contain explanations.

Recommendation

By inferring a programmer’s intent from program states and anticipating his or her needs,

our critic can recommend both alternative solutions and additional API elements that may

be needed next. For instance, by default a JFrame has the HIDE ON CLOSE property set as

the default close operation (line 30, Table 1.1). When the user presses the close button

of the frame, this property will only hide the frame without actually disposing the frame

object. The recommendation at line 15 (Figure 1.5(b)) presents the user with other available

options for the closing behavior, e.g. EXIT ON CLOSE. The three other recommendations at

lines 18, 19, and 20 inform the user how to control the horizontal/vertical gaps and the

alignments for the JPanels through their FlowLayouts.

Criticism

Criticisms are produced when the client code violates the pre-/post-conditions and the state

invariants of the API objects. For example, to be visible, a non-top-level GUI widget must

participate in a GUI hierarchy rooted at a top-level window. Our critic detects that this

is not the case for labelPanel (created at line 18) and buttonPanel (line 20) because

11

their parents are null at line 30 of Table 1.1. Since there is more than one critique (R and

C) at line 18, CriticAL offers a context menu for accessing these critiques (Figure 1.5(c)).

On clicking the menu item in the figure, CriticAL presents a detailed document related to

the problem, as shown in Figure 1.5(d). The document from the Java Swing tutorial is

used in this case. In general, every critique has a short tool-tip description and a detailed

explanation document, which can be stored either locally or remotely on the Internet.

Assume that to fix the problem, the programmer added the two orphan panels to the

frame. Now, at line 30, where the GUI is made visible, the critic detects that labelPanel

contains two JLabel’s as its children, and fieldPanel contains two JTextField’s (from

facts at line 28 of Table 1.1). By examining this symbolic GUI data structure, our critic

infers that the programmer is creating a 2-by-2 table. The critic is also able to conclude that

this way of making a table is problematic as it will be impossible to properly align a label

and its corresponding text field. Instead, such a table can be made in a single container

using SpringLayout, GridLayout, or GridBagLayout. This information has been added to

the critic as a rule of criticism.

1.2 Contributions

This dissertation tries to answer the following research questions:

1. What are the characteristics of API usage problems?

2. Can we formulate useful rules that capture the problems?

3. Do API usage problems recur such that we can justify the investment made on prepar-

ing the rules and documentation by API experts?

4. Can we model the behavior of an API abstractly and apply API rules on them to

produce critiques? Is a critic system feasible for a relatively large API such as Swing?

The main contributions of this thesis are the answers to the four key research questions:

12

1. We present a conceptual classification framework for reasoning about the real-world

problems programmers face while using APIs by manually analyzing 150 discussion

threads in the Java Swing forum. We classify the problems based on how they could

be helped by a critic.

2. We show that API problems recur in practice and API-usage rules could be developed

to address them.

3. Developing conceptual rules is not enough. We present a symbolic-execution-based,

extensible framework for supporting the API-based programming practice. Symbolic

execution tools have been widely used for program verification. To the best of our

knowledge, CriticAL is the first application of symbolic execution in actively helping

programmers learn and use APIs. We show that most of the API usage rules developed

in the study of the Java Swing forum could be easily supported by CriticAL.

4. We evaluate CriticAL by conducting a formative user case study and by applying it

to the code collected from the Java swing forum and the official Swing tutorials.

1.3 Overview of the Thesis

In this chapter, we introduced CriticAL, a symbolic-execution-based static analysis frame-

work for supporting API-based programming. To provide useful help, CriticAL must be

pre-configured with rules and documentation. In Chapter 2, we will conduct a case study of

the Java Swing Forum to illustrate the process of extracting such rules and documentation.

Chapter 3 will discuss the design of CriticAL, the semantics of symbolic execution, and

algorithms used for efficiently cloning symbolic objects and execution stacks to minimize

memory footprints. We will discuss the implementation detail of extending CriticAL to

support new APIs and libraries in Chapter 4. In Chapter 5, we will evaluate CriticAL

based on the real programs collected from the Swing forum as well as through a formative

study conducted in an undergraduate GUI development class at Clarkson University in Fall

13

2011. We will compare and contrast this work with other related work in Chapter 6 and

finally, Chapter 7 concludes the thesis.

14

Chapter 2

Case Study

Learning to use a software framework and its API can be a major endeavor for novices. To

help, we have built a critic to advise the use of an API based on the formal semantics of

the API. Specifically, the critic offers advice when the symbolic state of the API client code

triggers any API usage rules. To assess to what extent our critic can help solve practical

API usage problems and what kinds of API usage rules can be formulated, we manually

analyzed 150 discussion threads from the Java Swing forum. We categorize the discussion

threads according to how they can be helped by the critic. We find that API problems of

the same nature appear repeatedly in the forum, and that API problems of the same nature

can be addressed by implementing a new API usage rule for the critic. We characterize the

set of discovered API usage rules as a whole. Unlike past empirical studies that focus on

answering why frameworks and APIs are hard to learn, ours is the first designed to produce

systematic data that is directly used to build an API support tool.

2.1 Motivation

As mentioned in Chapter 1, we distinguish among three kinds of critiques: criticisms (“this

code behavior is inappropriate”), explanations (“what has caused the code to behave this

way”), and recommendations (“you may need this next”). They are broadly designed

to address the respective well-known challenges in debugging, understanding, and finding

15

relevant solutions [43]. However, to justify, and more importantly, to guide the further

development of our critic, we need solid empirical data about API use from the field.

Although several studies have been directed toward answering the question why APIs are

hard to learn and use [31,33,34,43,49], prior research has not produced concrete data that

can be directly used to build an API support tool. This motivated us to conduct a case

study to analyze and collect such data from the programming discussions in the Swing

Forum 1. Specifically, we want to answer two research questions:

• What are the characteristics of API usage problems? How are the needs for the three

kinds of critiques grounded empirically?

• Do similar problems recur? To what extent can our critic help advise practical API

usage problems?

The results of our study, in the form of a spreadsheet along with the source code collected,

are available online at https://sourceforge.net/projects/critical/files/results/.

The rest of the chapter is organized as follows. Section 2.2 presents our research method.

Results of our study are reported in Sections 2.3 (criticisms), 2.4 (explanations), and 2.5

(recommendations). We summarize our main findings in Section 2.6. Section 2.7 discusses

the threats to validity of this study. Finally, Section 2.8 concludes the chapter.

2.2 Research Method

In this case study, we are interested in answering two research questions discussed in Sec-

tion 2.1. To this end, we have conducted a case study of the online programming questions

in the Java Swing Forum. To conduct an in-depth exploration, we have chosen to narrow

down the scope of the analysis and focus our study on problems related to GUI composition

and layout in the Java Swing API. GUI composition and layout is an essential topic in

GUI programming that is backed by a strong design, but which many novices have great

difficulty with. Therefore, lessons learned from this study are likely to be generalizable.

1https://forums.oracle.com/forums/forum.jspa?forumID=950

16

https://sourceforge.net/projects/critical/files/results/
https://forums.oracle.com/forums/forum.jspa?forumID=950

We employ Eisenhardt’s methodology for case study research [15]. In our study, each

forum discussion thread represents a real-world scenario (or a case, in terms of case study

research) where somebody is having certain problems with the API. A typical discussion

thread contains multiple posts with questions, answers, and code examples. Many posted

code examples are self-contained, compilable programs that forum members can run to

assess the problems. Since there were too many discussion threads in the Swing Forum

to go through manually (more than 46,000 threads and more than 211,000 messages), to

expedite the process, we searched the forum with the keyword layout 2. This query returned

264 threads. Starting from the first thread, we classified each thread under the rules that

apply. We stopped at 150 threads because we felt that we hit the point of diminishing

return where we did not have to formulate new rules to solve the problems asked by the

original posters (OPs).

Eisenhardt’s method dictates that the observer must be intimately familiar with the

cases/subjects. To ensure that, we have paid close attention to the fine details in the cases.

Specifically, in addition to reading the text throughout, we compiled and ran each code,

sometimes with necessary modifications, in order to explore each case in detail. This not

only helped us get the full understanding of each case, but also resulted in a set of 90

test cases for testing our critic. During the process, we occasionally referred to the online

tutorials 3 and the API reference manual for help.

As Eisenhardt describes, the process of identifying categories from case data and encod-

ing them is highly iterative. In our study, the categories are the specific API use rules that

can be used to trigger helpful advice based on the symbolic program states of the API client

code. (For examples, see Section 2.3 Criticisms, Section 2.4 Explanations, and Section 2.5

Recommendations). We label each thread with all rules that we conclude are useful for the

thread. To be more thorough, we took help from Dr. Hou in the coding and classification

process. Disagreements between us, in terms of both the interpretation and the classifica-

2Search URL: https://forums.oracle.com/forums/search.jspa?threadID=&q=layout&objID=

f950&dateRange=all&userID=&numResults=15&rankBy=10001
3http://docs.oracle.com/javase/tutorial/uiswing/

17

https://forums.oracle.com/forums/search.jspa?threadID=&q=layout&objID=f950&dateRange=all&userID=&numResults=15&rankBy=10001
https://forums.oracle.com/forums/search.jspa?threadID=&q=layout&objID=f950&dateRange=all&userID=&numResults=15&rankBy=10001
http://docs.oracle.com/javase/tutorial/uiswing/

Clear (141)

Layout API Specific (117)Non-Layout Related (7)

Recommendation
33 (D)+5 (I)+22 (A) = 60

Criticism
42 (D)+8 (I) = 50

Explanation
18 (D)+3 (I) = 21

Unclear (9)

Discussion Threads (150)

Requirement Specific (17)

Figure 2.1: Classification of 150 Swing Forum discussion threads. D: directly helpful to
an OP’s core problems; I: indirectly helpful; A: most likely helpful. A thread helped by
multiple critiques of the same kind is counted only once. Since a thread may be helped by
more than one kind of criticism, recommendation, and explanation, the total number for
critiques is more than 117.

tion of the discussion threads, were resolved through numerous discussions over the course

of more than ten months. The results of our analysis, in the form of a spreadsheet along

with the code collected from the forum, are available online.

Figure 2.1 shows the top-level categories that lead to a final categorization of the 150

threads according to how they can be supported by the three kinds of critiques:

• There were 9 threads for which we did not understand what was the OP’s key question

(Original Poster), due to either poor English or unclear presentation, e.g 4.

• Among the 141 clear cases, 7 were not related to the layout API that this study is

focused on. For example, in one case 5, although the word “layout” appears in the

messages, the OP was asking about how to change the layout of the keyboard from

English to German.

• 17 of the 141 clear threads were about application specific requirements related to

layout. For example, one OP posted a GUI design diagram and asked how to achieve

it 6. In such cases, there is not much that our critic can help other than consulting a

human expert.

• The rest of the 117 threads were related to layout and GUI composition that we

4https://forums.oracle.com/forums/thread.jspa?messageID=5838236
5https://forums.oracle.com/forums/thread.jspa?messageID=5833268
6https://forums.oracle.com/forums/thread.jspa?messageID=5888922

18

https://forums.oracle.com/forums/thread.jspa?messageID=5838236
https://forums.oracle.com/forums/thread.jspa?messageID=5833268
https://forums.oracle.com/forums/thread.jspa?messageID=5888922

conclude can be supported through the three forms of critiques, that is, criticisms (50

threads), explanations (21 threads), and recommendations (60 threads).

Our result shows that code is commonly used for communicating about API usage

problems. Based on the analysis of the 141 clear threads, we found that 42.6% of the OPs

(60 threads) posted code when asking about their problems, and that in 38.3%, or 54, of

the 141 threads, some forum users replied with code. In this study, we have collected a

total of 90 runnable Java programs.

We have found encouraging evidence that our critic can be a valuable complement for

humans. This is because our critic has been found to be helpful not only for cases that have

been provided a solution but also for those without a solution. In particular, we have found

that 44%, or 62, of the 141 clear threads did not contain a solution. Interestingly, 75.8%,

or 47, of the 62 threads can be supported by the critiquing rules that we developed in this

study, 16 through criticisms, 10 through explanations, and 21 through recommendations.

Why were these threads not answered by forum participants? This is most likely because

many of them (25 threads) contain a long piece of code and parsing through such long code

to find problems is a cumbersome task. Our critic can be particularly valuable for such

cases, complementing human capabilities. In subsequent sections, we discuss in detail the

critiquing rules that we have identified for criticisms, explanations, and recommendations.

2.3 Criticisms

A criticism informs the programmer about some undesirable behavior in the API client

code. Table 2.1 depicts the list of specific criticism rules that we have identified in this

study and how many times each rule has been found to be useful. Section 2.3.1 introduces

these rules and briefly discusses how they are checked by our critic. Five cases are presented

as examples in the remaining subsections.

19

2.3.1 API Criticism Rules

A GUI programmed with the Swing API is essentially a tree data structure. The root of the

tree is a special top-level widget such as a JFrame or a JDialog, leaves are made of basic

GUI widgets such as JLabel, JTextField, and JButton, and internal nodes a container such

as JPanel, which contains other widgets recursively. To be displayed, a widget must have a

location and a size computed or explicitly set. A container may rely on a LayoutManager,

which is essentially an algorithm, to automatically compute the size and location for each

of its child widgets, based on layout-specific constraints and strategies. Swing provides

several built-in layout managers, each with a different layout strategy, such as FlowLayout,

BoxLayout, GridLayout, GridBagLayout, and SpringLayout. Rather than using a layout

manager, a programmer also has the option to manually specify the size and location for

each widget, which is also known as absolute positioning.

The following criticism rules are found useful to enforce the internal consistencies of the

GUI tree:

• Orphan GUI Objects: To be visible, all GUI objects must be part of a GUI tree rooted

at a top-level component such as a JFrame or a JDialog.

• Parent Switching : When the containing GUI tree is invisible, moving a widget between

two containers has no effect and, thus, should be avoided.

• Missing Layout Constraints: When using a SpringLayout, necessary constraints for

the container as well as its widgets must be specified to get the desired effect.

• Misplaced Layout Constraints: Some layout managers, such as BorderLayout and

GridBagLayout, require layout specific constraints to position the child components.

When widgets are added to a container that uses a layout manager, only constraints

specific to the layout manager should be used.

• One Layout, One Container : The relationship between layout managers and con-

tainers must be one-to-one. Each layout manager maintains the size and position

20

Listing 2.1: JPanels sharing the same layout manager.� �
1 BorderLayout layout = new BorderLayout();
2 JPanel ui = new JPanel(layout);
3 JPanel preview = new JPanel(layout);
4 JPanel figures = new JPanel(layout); 	� �

information of the child widgets for a container. Sharing a layout manager may result

in unpredictable GUI behavior. The example in Listing 2.1 shows three panels sharing

the same BorderLayout 7.

• Content Mismatch: When a container is made visible, it must have the same set of

child widgets as its layout manager.

• Positioning and Sizing Constraints: When a layout manager is used by a container,

calling setLocation(), setSize(), and setBounds() methods on child components

have no effect and should not be used. When null layout is used, the setPreferredSi-

ze(), setMinimumSize(), and setMaximumSize() methods have no effect and should

not be used. The JFrame.pack() method should be used only when the content pane

of the frame has a layout manager or when it has an explicitly set preferred size.

• Dynamic GUIs: When the content of a container is changed, it must be revalidated

and repainted for the change to take effect.

Each API targets to solve a particular set of problems. APIs, thus, have some usage

conventions. While it is not necessarily always wrong to use an API in a way deviating from

conventions, such a use is nonetheless uncommon, often showing some confusion or neglect

of the programmer. Spotting such deviations can thus be useful. We have identified two

common deviations from conventions:

• Components Resizing Behavior : Not all components are meant to be resized in both

directions. By convention, widgets such as JButton and JLabel should not be resized

in either direction. Widgets such as JTextField and JPasswordField could grow

7https://forums.oracle.com/forums/thread.jspa?messageID=5890601

21

https://forums.oracle.com/forums/thread.jspa?messageID=5890601

Table 2.1: List of helpful criticisms discovered in the forum (D: Direct, I: Indirect, T: Total).
The Return on Investment (ROI) is calculated by dividing the total number of helped cases
by the total number of rules.

API Criticism Rules D / I / T

Postconditions

Orphan GUI Objects 6 / 0 / 6

Missing Layout Constraints 2 / 2 / 4

Parent Switching 2 / 0 / 2

Misplaced Layout Constraints 3 / 1 / 4

Invariants

Content Mismatch 4 / 0 / 4

Dynamic GUIs 4 / 0 / 4

One Layout, One Container 3 / 0 / 3

Preconditions

JFrame.pack() Constraints 5 / 4 / 9

Positioning and Sizing Constraints 8 / 0 / 8

Deviation from Usage Conventions

Components Resizing Behavior 10 / 4 / 14

Table Design 10 / 2 / 12

Total 58 / 12 / 70

Return on Investment 6.36

horizontally but not vertically. A violation of such conventions is often undesirable 8.

When they are violated, it can be useful to teach the users how to prevent the widget

from stretching.

• Table Design: A table-like GUI design is conventionally achieved using one of GridLayout,

GridbagLayout, and SpringLayout with a single container. Two adjacent containers

cannot be used to create a table-like design. This is because it would be hard, if not

impossible, to align the GUI widgets contained in the two containers.

As shown in Table 2.1, the criticism rules are enforced as preconditions, postconditions,

and invariants for the GUI layout API. Since none of these rules looks overly complicated,

it is probably safe to speculate that programmers encounter problems mainly due to lack

of awareness of these simple rules. Hence a tool like our critic can be very useful.

8https://forums.oracle.com/forums/thread.jspa?messageID=5854070

22

https://forums.oracle.com/forums/thread.jspa?messageID=5854070

Listing 2.2: Code for Case 1 (modified).� �
1 public class CoordinateLayout extends SpringLayout {
2 SpringLayout main; Container cont;
3 public CoordinateLayout(Container ct) {
4 main = new SpringLayout(); cont = ct; ...
5 }
6 public void addComponent(Component comp, int x, int y) {
7 main.putConstraint(WEST, comp, x, WEST, cont); // X−axis
8 main.putConstraint(NORTH, comp, y, NORTH, cont); // Y−axis
9 }}

10 public class CoordinateLayoutTest {
11 public static void main(String[] args) {
12 JFrame frame = new JFrame(‘‘TEST’’);
13 JPanel pane = new JPanel();
14 CoordinateLayout layout = new CoordinateLayout(pane);
15 pane.setLayout(layout);
16 JLabel aLabel = new JLabel(‘‘First Name:’’);
17 JButton aButton = new JButton(‘‘First’’);
18 // layout contains widgets but container does not
19 layout.addComponent(aLabel, 5, 5);
20 layout.addComponent(aButton, 15, 5);
21 frame.setSize(300,300);
22 frame.setContentPane(pane);
23 frame.setDefaultCloseOperation(JFrame.EXIT ON CLOSE);
24 frame.setVisible(true);
25 }} 	� �

2.3.2 Case 1 (Orphan Objects, Content Mismatch, Missing Constraints)

The code for Case 1 is shown in Listing 2.2 9, where the CoordinateLayout class extends

Swing’s layout manager SpringLayout to specify the position of a widget relative to its

container. Our critic reveals three problems.

First, the SpringLayout object created at line 4 and referenced by main is not used

by any container. Hence it becomes an orphan GUI object. In fact, the main object is

unnecessary, and the main.putConstraint() at lines 7 and 8 should be replaced by calls

to this.putConstraint(). Although our critic does not directly give this advice, pointing

out the orphan layout object should help guide the OP closer to the right solution.

Second, since aLabel and aButton are not added to the pane, they become orphan ob-

jects too, and, thus, are invisible when the frame is made visible, as shown in Figure 2.2(a).

9https://forums.oracle.com/forums/thread.jspa?messageID=5698221

23

https://forums.oracle.com/forums/thread.jspa?messageID=5698221

(a) Widgets Invisible (b) Widgets Visible

Figure 2.2: JFrame in Listing 2.2 before and after the fix for orphan widgets.

Listing 2.3: Patch for Lisitng 2.2.� �
1 // Updated the coordinates for the button
2 layout.addComponent(aLabel, 5, 5);
3 layout.addComponent(aButton, 80, 5);
4 // Constraints for content pane with respect to aButton
5 layout.putConstraint(EAST, pane, 5, EAST, aButton);
6 layout.putConstraint(SOUTH, pane, 5, SOUTH, aButton); 	� �

Related, our critic also reports a problem of Container and Layout Content Mismatch for

pane. This is because when the pane is made visible, it contains no child widget but its

layout contains both aLabel and aButton. These two objects can be added by calling

pane.add(aLabel); pane.add(aButton); before line 22. As shown in Figure 2.2(b), the

two widgets then become visible.

Third, our critic points out that the code fails to specify the constraints for the right

(EAST) and bottom (SOUTH) edges of the content pane. As a result, the layout manager

cannot correctly compute the size for the content pane. This problem is masked by the call

to setSize() at line 21, but can be revealed by calling frame.pack(), which forces the

layout manager to compute its size; as shown in Figure 2.3(a), the widgets are clipped. The

patch shown in Listing 2.3 can be applied to replace lines 19-20 in Listing 2.2, resulting in

the view shown in Figure 2.3(b).

24

(a) Before (b) After

Figure 2.3: Listing 2.2 before and after the patch for missing constraints.

Listing 2.4: Case 2 (Parent Switching Positioning and Sizing).� �
1 JFrame frame = new JFrame();
2 frame.getContentPane().setLayout(null); ...
3 jPanel1 = new javax.swing.JPanel();
4 jPanel1.setBounds(700, 50, 270, 400);
5 jPanel1.setLayout(null)
6 frame.getContentPane().add(jPanel1); ...
7 frame.getContentPane().add(jLabel4);
8 jPanel1.add(jLabel4);
9 jLabel4.setBounds(700, 70, 180, 14); ...

10 frame.pack()
11 frame.setVisible(true); 	� �

2.3.3 Case 2 (Parent Switching, Positioning and Sizing)

Our critic reveals two problems for Case 2 10 (Listing 2.4). The first problem is that jLabel4

is first added to the content pane (line 7) but later to another container jPanel1 (line 8).

As a result, when the GUI tree is made visible, jLabel4 is visible only under jPanel1 but

not under the content pane. In fact, the OP complained exactly about this. The critic

advises the OP to create a new JLabel.

The second problem is calling the pack() method on a JFrame whose layout manager is

set to null. When the content pane’s layout manager is set to null, and it does not have a

preferred size set, the pack() method cannot compute the desired size of the window. As a

result, the window becomes too small to show its title and content (Figure 2.4(a)). Instead

of pack(), setSize() can be called to explicitly specify a size for the frame (Figure 2.4(b)).

There are cases where a call to frame.setSize() and frame.pack() appear together,

e.g. 11. These two methods cancel the effect of one another and should not be used together.

10https://forums.oracle.com/forums/thread.jspa?messageID=5714432
11https://forums.oracle.com/forums/thread.jspa?messageID=5774019

25

https://forums.oracle.com/forums/thread.jspa?messageID=5714432
https://forums.oracle.com/forums/thread.jspa?messageID=5774019

(a) With null layout and pack(). (b) Calling frame.setSize()) to make other GUI widgets visible.

Figure 2.4: The JFrame in Case 2 (Listing 2.4).

2.3.4 Case 3 (Dynamic GUIs)

As shown in Listing 2.5 12, the OP of Case 3 wants to switch widget c (line 1) and

lastSelectedLabel in the container puzzlePanel. But the switching is not immediately

visible but only after the frame is resized manually.

The process of adding and removing components in the GUI subtree of puzzlePanel

makes the container invalid and the changes ineffective. Generally, such an issue arises

from the dynamic construction of a GUI. The solution for the user is to explicitly tell

the Swing framework to redo the layout. It can be done in two ways: by either call-

ing puzzlePanel.revalidate(); puzzlePanel.repaint();, or by calling pack(); on the

root widget (JFrame) instead of just the this.invalidate(); this.repaint(); methods

in lines 9 and 10. The call to revalidate() first invalidates the previously computed size

and position of the widgets and recomputes them by performing relayout of the changed

container. The pack() method recomputes the layout of the whole GUI tree and not just the

modified container. The modifications, however, become apparent when the frame resizes

because the resizing event forces relayout.

12https://forums.oracle.com/forums/thread.jspa?messageID=5861121

26

https://forums.oracle.com/forums/thread.jspa?messageID=5861121

Listing 2.5: Dynamic GUIs (modified).� �
1 puzzlePanel.remove(c);
2 puzzlePanel.remove(lastSelectedLabel);
3 gbc.gridx=cX;
4 gbc.gridy=cY;
5 puzzlePanel.add(lastSelectedLabel,gbc);
6 gbc.gridx=lX;
7 gbc.gridy=lY;
8 puzzlePanel.add(c,gbc);
9 this.invalidate();

10 this.repaint(); 	� �
Listing 2.6: A JWindow that violates size constraints.� �

1 private void createAndShowWindow() {
2 JWindow win= new JWindow(frame);
3 win.setSize(120, 90);
4 win.setLocation(90, 50);
5 Container cp= win.getContentPane();
6 cp.setBackground(Color.YELLOW);
7 JLabel lb= new JLabel(‘‘<html><u>Header</u></html>’’);
8 lb.setBounds(35,5, 80,20);
9 cp.add(lb);

10 for (int i=0; i<2; i++) {
11 lb= new JLabel(‘‘Line ’’+(i+1));
12 lb.setBounds(10,i∗20+30, 80,20);
13 cp.add(lb);
14 }}
15 win.setVisible(true); 	� �

2.3.5 Case 4 (Content Mismatch, Positioning and Sizing)

Our critic reveals two problems from the code in Listing 2.6 13. The content pane of

the JWindow object has a BorderLayout. The content pane has all three labels but its

BorderLayout contains only the last added label (Line 2). Hence the first two widgets

are positioned using their specified sizes and locations and the last label positioned by the

layout manager. As depicted in Figure 2.5(a), the label Line 2 is positioned at the center

location but the other two labels are located at their specified positions.

There can be two solutions to this problem. The first is to use null layout by calling

13http://forums.oracle.com/forums/thread.jspa?messageID=9281019

27

http://forums.oracle.com/forums/thread.jspa?messageID=9281019

(a) With layout (b) Without layout

Figure 2.5: The view of JWindow before and after the fix.

cp.setLayout(null) and completely relying on absolute positioning. Figure 2.5(b) shows

the effect of this solution. The second solution, and a better one, is to use only layout

managers, without hard-coding sizes and positions.

2.3.6 Case 5 (Table Design, Resizing Conventions)

Listing 2.7: A table implemented using multiple containers (modified).� �
1 public static void main(String[] args) {
2 JFrame frame = new JFrame(‘‘DVD rental center’’);
3 frame.setDefaultCloseOperation(JFrame.EXIT ON CLOSE);
4 JPanel pane = (JPanel)frame.getContentPane();
5 pane.setLayout(new BoxLayout(pane, BoxLayout.Y AXIS));
6

7 JLabel rentFee = new JLabel(‘‘Rent Fee ’’);
8 JLabel lateFee = new JLabel(‘‘Late Fee ’’);
9 JTextField rentFeeField = new JTextField(10);

10 JTextField lateFeeField = new JTextField(10);
11 JPanel p1 = new JPanel(true);
12 JPanel p2 = new JPanel(true);
13 p1.setLayout(new BoxLayout(p1, BoxLayout.LINE AXIS));
14 p1.add(rentFee);
15 p1.add(rentFeeField);
16 p1.setAlignmentX(JPanel.LEFT ALIGNMENT);
17 pane.add(p1);
18 p2.setLayout(new BoxLayout(p2, BoxLayout.LINE AXIS));
19 p2.add(lateFee);
20 p2.add(lateFeeField);
21 p2.setAlignmentX(JPanel.LEFT ALIGNMENT);
22 pane.add(p2); ...
23 } 	� �

28

(a) Labels in the same length. (b) Labels in different lengths.

Figure 2.6: Table design achieved using three BoxLayouts.

The code for Case 5 is shown in Listing 2.7 14. Although it gives an illusion of a table-

like view as shown in Figure 2.6(a), where every widget seems to be positioned properly,

this is only coincidental, and our critic gives two criticisms.

First, when the text in rentFee is changed from “Rent Fee” to “Rental Fee”, as shown

in Figure 2.6(b), the two labels become different in length and the table columns are not

properly aligned anymore. In general, a table design that spans multiple containers often

has alignment issues that are hard to solve. Instead of using multiple containers, the user

is advised to use one of GridLayout, GridBagLayout, or SpringLayout.

Second, when the frame is resized, the text fields grow both horizontally and vertically,

violating the resizing convention that a text field does not grow vertically. This is because

BoxLayout is used and the text fields have a large default maximum size that causes them

to grow.

2.4 Explanations

Our critic produces an explanation for those API elements that many users commonly find

hard to work with, directly in the context where they are used. While explanations are

also inherently part of criticisms and recommendations, we have found that explanations

can help programmers just by themselves. Programmers often use an API without the full

knowledge about its behavior and interaction with other code. They tend to be satisfied as

long as the API elements appear to fulfill their needs, ignoring potential side-effects that

often become visible later in the development. Explanations are useful in communicating

14https://forums.oracle.com/forums/thread.jspa?messageID=5790663

29

https://forums.oracle.com/forums/thread.jspa?messageID=5790663

Table 2.2: List of helpful explanations discovered in the forum. (D: Direct, I: Indirect, T:
Total)

API Explanation Rules D / I / T

Behavior of Null Layout 9 / 3 / 12

Behavior of GridbagLayout 5 / 0 / 5

Resizing Behavior of BorderLayout 4 / 0 / 4

API Specific Explanations 3 / 0 / 3

Total 21 / 3 / 24

Return on Investment 6

such non-obvious, subtle behavior of the API. In this way, they facilitate the programmers

in reasoning about their code.

In this section, we present some of the useful explanations that we have identified for GUI

layout (Table 2.2). Since programmers at different levels of expertise may need explanations

with various levels of details, our study also demonstrates how opportunities for explaining

API elements can be identified on an as-needed basis, by looking at actual forum discussions.

2.4.1 Behavior of Null Layout

As discussed in Section 2.3.1, when a container has a null layout, it must use absolute

positioning to position its children. As a result, when the container is resized, its children

will not resize automatically. Several OPs used null layout but still expected the child

widgets to be resized automatically 15. Our critic explains this implication of null layout

to avoid the potential confusion. In addition, since the use of absolute positioning may

adversely affect the appearance of the GUI when ported from one platform to another, the

user should be advised about this as well.

2.4.2 Centering Behavior of GridbagLayout

GridBagLayout is a layout manager 16 that positions its child widgets inside a grid. It

allows a child to span multiple rows and columns. The visual properties for each child, such

15https://forums.oracle.com/forums/thread.jspa?messageID=5849188
16http://docs.oracle.com/javase/tutorial/uiswing/layout/gridbag.html

30

https://forums.oracle.com/forums/thread.jspa?messageID=5849188
http://docs.oracle.com/javase/tutorial/uiswing/layout/gridbag.html

as size and growth, are specified as parameters via a GridbagConstraint object. Some OPs

were confused as to which constraint parameter causes what visual effect 17. For example,

in the absence of at least one non-zero value for weightx (weighty) for a column (row), that

column (row) will not grow with the enclosing container. In the absence of a fill property,

a child component at each cell will not grow with the cell, leaving an empty gap when the

cell grows bigger. Explaining these can be very helpful for understanding the behavior of

the API client code.

2.4.3 Resizing Behavior of BorderLayout

A BorderLayout positions its children in five pre-defined locations: center, north, south,

east, and west. Some novices can be puzzled by its exact behavior. For example, the

element in the center takes all of the empty space and ignores the size property explicitly

set by the user when resized. As the window becomes smaller, the center widget also grows

smaller and eventually gets clipped. Only when there is no more space available for the

center widget, do the widgets in the south and then in the north get clipped in the vertical

axis and the widgets in the west and then the east get clipped in the horizontal axis. Such

explanations can be helpful for the programmer to understand BorderLayout properly and

also in deciding if the layout is the right choice 18.

2.4.4 API Specific Explanations

Some API elements need to be explained to help programmers understand certain behavior

of the API client code. For instance, the call to setMaximumSize() on a basic widget such as

JButton and JLabel can cause visual problems on a different platform where the maximum

size set may be smaller than the required size 19. Furthermore, setting the preferred size of

one component has the surprising side effect of forcing all components in a GridLayout to

have the same size 20. Explaining these API elements can be useful for understanding the

17https://forums.oracle.com/forums/thread.jspa?messageID=5743612
18https://forums.oracle.com/forums/thread.jspa?messageID=5849282
19http://forums.oracle.com/forums/thread.jspa?messageID=5698635
20http://forums.oracle.com/forums/thread.jspa?messageID=5828313

31

https://forums.oracle.com/forums/thread.jspa?messageID=5743612
https://forums.oracle.com/forums/thread.jspa?messageID=5849282
http://forums.oracle.com/forums/thread.jspa?messageID=5698635
http://forums.oracle.com/forums/thread.jspa?messageID=5828313

Table 2.3: Classification of recommendations discovered in the forum.

Description Total

Generic Recommendations 43

Syntax-Based Recommendations 11
(Confusing APIs: 5 / Lite Context: 6)

State-Based Recommendations 10
(Unused Features: 7 / Alternative Design: 3)

Total 64

Return on Investment 12.8

API client code.

2.5 Recommendations

What differs an expert from a novice programmer is the amount of information they have

about the framework and API. To help novices seek API information, our critic recommends

relevant API elements and documentation within the programming context. With enough

of the programming context taken into account, the tool can make more precise recommen-

dations on the use of API elements. It can also present competing solutions so that the

user can choose the right one based on his or her needs. A key is the capability to infer the

programmer’s intent from the API client code. However, even with less knowledge of the

programming context, our critic should still be able to make generic recommendations, just

enough to push novices toward the right direction when they get stuck with their code. In

both cases, recommendations bring information where the user needs it the most. Table 2.3

shows the classification of recommendations according to the programming context. We

discuss them in order of ease of implementation.

2.5.1 Generic Recommendations

Generic recommendations are applicable even when there is not a proper programming

context. Novice programmers often have problems in mapping requirements to the relevant

32

API elements. For example, consider the following message from the forum 21:

“Hi, im [i am] quite new to java, and just want to know, how to layout labels and buttons

onscreen, [... elided]. If someone could print some sample code with a sample label and

layout details that would be a great help. [...]”

Many such problems can be solved by reading documents that are already available on-

line, but which need to be brought to the programmer’s attention through recommendation,

for instance, the Swing layout tutorial 22. CriticAL can recommend such documents with-

out any context. We found 43 instances of problems that can be helped by recommending

a generic document containing a list of How-Tos about the layout API such as “How to use

layout managers”, “How to achieve absolute positioning”, and “How to combine multiple

layout managers”. Such recommendations should be very useful for novices who do not

have much conceptual knowledge of the API [41].

2.5.2 Syntax-Based Recommendation

CriticAL can provide recommendations based on the syntax of the API methods used in

the code. We have identified two useful syntax-based recommendations in the forum.

Confusing API Elements

Sometimes users may get confused in choosing the correct API method when the framework

contains multiple methods with closely related functionalities. For instance, JLabel allows

the use of setAlignmentX(), setHorizontalAlignment(), and setHorizontalTextPosit-

ion() methods, which are all related to alignment or position, thus confusing the users,

e.g. 23 (see Section 1.1.1 for details). CriticAL makes a recommendation of all three meth-

ods after detecting the presence of anyone in the group. The recommendation also explains

the situation where each method is suitable.

21https://forums.oracle.com/forums/thread.jspa?messageID=5833295
22http://docs.oracle.com/javase/tutorial/uiswing/layout/
23http://forums.oracle.com/forums/thread.jspa?messageID=5827139

33

https://forums.oracle.com/forums/thread.jspa?messageID=5833295
http://docs.oracle.com/javase/tutorial/uiswing/layout/
http://forums.oracle.com/forums/thread.jspa?messageID=5827139

Layout Recommendation in Lite Context

It is sometimes possible to infer a user’s partial requirements based on the API elements

used in his code. Based on such inferences, a potentially applicable layout manager can be

recommended. For instance, when a user has multiple components in a container, one of

which is a JTextArea, we can recommend the CENTER location of BorderLayout for the text

area on the basis that it can grow in both directions, e.g., 24. Such a recommendation would

also list other possibilities such as BoxLayout and GridLayout in case the user wants the

text area to grow proportionally with other widgets, but definitely not FlowLayout, which

keeps components at their preferred sizes. Furthermore, if the user wants to partition the

container disproportionately, then a GridBagLayout can be recommended.

2.5.3 State-Based Recommendations

Based on program states, CriticAL can capture the programming context more concretely

and provide more precise recommendations.

Recommending Unused Features

CriticAL can be configured to recommend common features used in GUI programming

based on the current program state. For instance, by recommending adding a border to the

JPanel in 25, our CriticAL would help solve the problem of the user who wants to shift all

child components in a container to the right by a small distance. Such recommendations

help programmers discover API features potentially unknown to them.

Alternative Design

APIs are designed to solve a particular set of problems. It is always beneficial to use API

elements in ways that they are intended. The GridBagConstraints used in lines 2-6 and 8

of Listing 2.8 26 is essentially trying to achieve the behavior of a FlowLayout with left

24http://forums.oracle.com/forums/thread.jspa?messageID=9201990
25http://forums.oracle.com/forums/thread.jspa?messageID=5716439
26https://forums.oracle.com/forums/thread.jspa?messageID=5729204

34

http://forums.oracle.com/forums/thread.jspa?messageID=9201990
http://forums.oracle.com/forums/thread.jspa?messageID=5716439
https://forums.oracle.com/forums/thread.jspa?messageID=5729204

Listing 2.8: Using GridBagLayout where FlowLayout suited better.� �
1 protected void relayout() { // Complicated way
2 final GridBagConstraints gbc = new GridBagConstraints();
3 gbc.anchor = GridBagConstraints.LINE START; // Start left
4 gbc.weighty = 0.0; // Grow with a factor of 0
5 gbc.fill = GridBagConstraints.NONE; // Do not fill extra space
6 gbc.insets = new Insets(0, 10, 0, 10); // External padding ...
7 for (int i = 0; i < panels.size();i++) {
8 gbc.gridx = i; // Single line, increase column when adding
9 rootPanel.add(panels.get(i), gbc); // Add element with constraint

10 }...}
11 protected void relayout() { // Simple alternative
12 rootPanel.setLayout(new FlowLayout(FlowLayout.LEFT));
13 for (int i = 0; i < panels.size();i++) {
14 rootPanel.add(panels.get(i)); // No constraint needed
15 } ...} 	� �

alignment (lines 12-15) for rootPanel. CriticAL could be configured to recommend the

easier, alternative solution of FlowLayout.

2.6 Discussion

In this section, we summarize our observations resulting from this study as answers to our

research questions.

As shown in Figure 2.1, 117 of 134 layout-related API discussions can be helped by our

critic; there are only 17 truly requirements specific problems, which our critic cannot help

since it has no knowledge of the unique user requirements. The data in Figure 2.1 also

indicate that all three forms of critiques are needed, and that recommendations and expla-

nations are at least equally important as criticisms for supporting programmers. Overall,

this study shows that our critic can be very useful in helping with using APIs.

To be useful, the critic must be equipped with high-quality API usage rules to accurately

anticipate a user’s goals and address his or her needs. This study supplies the specific API

usage rules that can be used in the critic. In addition, at a level higher than the specific

rules, we can categorize them into the following common sources:

• Internal consistency rules derived from pre-/post-conditions as well as invariants for

35

an API;

• Common expectations on program behavior, such as the requirement that a text field

and a button normally should not grow vertically;

• Requirements for some common user tasks, such as creating an m x n table, which

can be inferred from program states;

• Additional solution procedures, or potentially surprising information, that are com-

monly used together with solutions already present in the API client code.

Interestingly, we find that the discovered API usage rules are nothing more than the all

too familiar preconditions, postconditions, and invariants. Since none of these rules appear

to be overly complicated, we conclude that raising programmers’ awareness of these rules

is the key for improving API usability.

To help measure how often a problem recurs and an API usage rule can be applied,

we have calculated a rate of Return On Investment (ROI) for each of the three kinds of

critiques in Tables 2.1, 2.2, and 2.3. When resources are limited, the ROIs can be used to

prioritize the list of API usage rules to determine which subset should be implemented first.

2.7 Threats to Validity

The results reported in this chapter are based on classifying the layout-related discussions

in the Swing Forum. Since the layout API has a strong flavor of a tree data structure, other

APIs may exhibit different proportions for the three kinds of critiques. Nevertheless, we

anticipate that our research method can be applied to study other frameworks and APIs.

In this study, we identified API usage rules and categorized the discussion threads

according to whether they can be helped by these rules or not. These are done solely based

on our own interpretation of the forum discussions. Since we cannot directly interview the

original poster, we have to assume certain facts about the code and sometimes, an OP’s

intention. Hence, there is a danger that we may have misinterpreted the situation. We

may not have addressed all of the concerns of the original poster in our derived rule set.

However, both of these concerns have been mitigated by the good amount of efforts that

36

we have put into this study and by using another rater (Dr. Hou) throughout the process

of coding and classification. Furthermore, our past experience with the Swing framework

and its forums [34] can also help.

When calculating ROIs for API rules, we have merged a few rules to simplify the pre-

sentation. This is because these rules are logically related. Nevertheless, the presented ROI

gives some insights as to the effectiveness and the applicability of the API rules. It should

also be noted that the 150 discussions studied are only a very small subset of all the Swing

Forum discussions. There are good reasons to believe that there are more cases in the forum

that these rules can be applied to.

2.8 Conclusion

To assess to what extent our critic can help solve practical API usage problems and what

kinds of API usage rule can be formulated, we manually analyzed 150 discussion threads

from the Java Swing forum, from which we created three sets of API usage rules related

to the layout logic. We categorized the discussion threads according to how they can be

helped by the critic into criticisms, explanations, and recommendations. We illustrate these

API usage rules with concrete examples. We find that all three kinds of critiques are useful

and justified, API problems of the same nature appear repeatedly in the forum, and API

problems of the same nature can be addressed by implementing a new API usage rule. We

describe the nature of the API usage rules and how they can be checked. We also discuss

the kind of code behavior inference that is needed in order to make the critic smarter and

more powerful and the tradeoffs.

37

Chapter 3

The Design of CriticAL

In this chapter, we will discuss the detailed design of the CriticAL framework. We will

formalize the notion of a symbolic object and define operations on it. The CriticAL frame-

work is an interpreter that works on top of the Jimple intermediate representation [61] by

manipulating the state of the symbolic objects. We will specify the semantics of execution

of each statement using a semi-formal notation. Note that this notation only serves as a

means for rigorously communicating our concepts behind the framework.

The CriticAL framework has been designed as an Eclipse plugin that can be further

extended by developing new plugins within the Eclipse platform. Figure 3.1 depicts the

major components of CriticAL and its plugin architecture. On the bottom layer is the

Eclipse platform that provides input (Java project) and output (error markers) services

to CriticAL. CriticAL relies on its core plugin for supporting the symbolic execution of

a client’s code. The core plugin needs the SOOT [61] framework to retrieve control flow

graphs of methods under analyses. These graphs are constructed on top of the Jimple

intermediate representation provided by SOOT. CriticAL also uses the XStream library

for XML serialization and de-serialization of Java objects used storing and retrieving the

settings of CriticAL. To support an API, CriticAL must be extended through an extension

plugin in which the API objects are modeled symbolically with user-defined abstractions.

As a first prototype, we implemented the support for the Java Swing API focusing on

38

Figure 3.1: The plugin architecture of CriticAL and its major components.

the issues related to layout and GUI composition. CriticAL can support more than one

extensions.

3.1 Architectural Overview of the Core

Figure 3.2 depicts the overall architecture for our critic system. The technical foundation for

our system is symbolic execution [40], which requires an entry method to start its execution.

Our current prototype supports the Java AWT/Swing API, particularly, the layout of GUI

components. For this API, the entry methods are those that instantiate a top-level window

such as a JFrame and a JDialog, or any subclasses of these classes.

The control-flow graph of an entry method is traversed in depth-first order to enumerate

paths and perform symbolic execution. Non-library methods are inlined to produce inter-

procedural paths. Loops and recursive calls are expanded up to a specified bound.

The program state at any control point consists of the heap and the stack, which con-

tain variables and their symbolic values, as well as the program counter, which marks the

current statement on a feasible path. The path conditions at the entry to each branch are

represented as predicates over the symbolic program state. These predicates are conjoined

and passed to a constraint solver for checking satisfiability and pruning infeasible paths 1.

1Note that the implementation of the constraint solving module is a future work. In current implemen-

39

Figure 3.2: Architecture of our critic system.

To execute each statement on a feasible path, the symbolic values that the statement refers

to are first looked up from the stack and heap. The statement is then executed against

these values, according to its semantics.

When backtracking from one branch to another, the program state must be restored to

the point right before the immediate common predecessor of the two branches. We achieve

this by maintaining the history for each variable in the program state at the granularity of

branches. However, for efficiency, within a branch, assignments overwrite previous values

that variables may have.

The state of a program can be checked against the API use rules at several points of

interest. The points of interest could be before or after an API method or an event handling

method is called. The points of interest can be configured as per the need of analysis.

tation, we conservatively assume that a predicate may be evaluated to true as well as false and generate two
paths as a result of executing a conditional statement.

40

The listeners registered on GUI widgets are also monitored. After a top-level symbolic

widget is made visible in the main control flow, a combination of different GUI events of a

pre-specified length are generated and executed to check the effects of the GUI events on

the program state 2. This technique has also been used by others in the generation of GUI

test-cases [24,45].

The core of our critic system consists of a set of base classes. By extending these classes,

the semantics of a new API can be modeled soundly and conservatively as Java objects and

methods. These symbolic objects collectively form the symbolic object library in Figure 3.2.

Thus, supporting a new API amounts to parameterizing our critic system with a symbolic

object library. Currently, the checking of API use rules and the presentation of related

documentation are directly implemented in Java together with symbolic objects.

3.2 Modeling Symbolic Objects

Let S, Φ, and C be the universe of symbolic objects, Jimple expressions (Value), and

concrete Java objects, respectively; T be the set of Java types; M be a set of maps whose

domains and ranges are symbolic objects ({µ : {k 7→ v : k ∈ S ∧ v ∈ S}}); and Ψ : Φ→ S be

the symbolic execution environment (we will provide a more detailed definition of execution

environment in Section 3.3.2).

Definition 1 (Symbolic Objects). A symbolic object s ∈ S is represented by a tuple

〈ω, τ, φ, ϑ, µ〉 where ω ∈ boolean : {true, false} represents whether the object is non-

deterministic, τ ∈ T represents the known type for s, φ ∈ Φ represents the Jimple expression

that evaluated s, ϑ ∈ C represents the known concrete value of s after evaluation of φ (used

for primitive types such as int and float), and µ ∈M represents a property-value mapping,

which stores properties of the symbolic object (e.g. a symbolic member field mapped to a

symbolic value).

The first three elements in Definition 1 provide meta-information about a symbolic

2Note that in the current implementation, we do not take account of the effect of one GUI event on
another.

41

object and the last two represent the value or the state of the symbolic object. Note

that ω is true when the object is not created within the symbolic execution environment

but received from the external environment such as user inputs or parameters of an entry

method whose starting value cannot be determined statically. For these cases, only the

type information of the symbolic object is assumed from Java’s type system but the value

is kept open conservatively and represented as a path condition in predicates that involve

these values.

3.2.1 Modeling Non-Primitive Types

Let us illustrate the structure of a non-primitive symbolic object through an example.

Consider an instruction that creates a JFrame: [JFrame frame = new JFrame("Test");]

with the title "Test". The symbolic execution environment would look like the following:

Ψ : {frame 7→ 〈false, JFrame,NewExpr, ∅, {title 7→ Test}〉, . . .},

where NewExpr is the Jimple representation for the new expression in Java. Note that

both the title field and the Test value are symbolic string objects. (See Section 3.2.3 for

details on representing a contiguous block of memory such as a String.) Also note that the

concrete value of the symbolic frame object is null (∅) because JFrame is a non-primitive

type.

3.2.2 Modeling Primitive Types

Let us consider another example: [int a = 1; int b = 2; int c = a+b;]. In this case,

the symbolic execution environment will look like the following:

Ψ : {a 7→ 〈false, int, IntConstant, 1, ∅〉, b 7→ 〈false, int, IntConstant, 2, ∅〉,

c 7→ 〈false, int, AddExpr, 3, ∅〉}.

Note that IntConstant and AddExpr (a+b) are Jimple representations for an integer con-

stant and an add expression, respectively.

42

3.2.3 A Completeness Argument

Having defined symbolic object, we need to ensure that such a representation can indeed

model the state of all possible Java objects. We will present Theorem 1 to address this

concern.

Theorem 1 (Completeness Theorem). Definition 1 can model the state of all Java objects.

Proof of Theorem 1. An object in Java can be represented using either contiguous blocks

of memory or non-contiguous blocks. To prove the theorem, we will show that Definition 1

can model both cases without any loss of information.

Case 1 - Contiguous Block: In Java, contiguous blocks represent either primitive types

such as char, int, and float or an array. We have already shown how primitive values

are modeled without a loss of information in Section 3.2.2. An array can be modeled

using indices as keys and array elements as values in the property-value map of a sym-

bolic object. For instance, consider the following Java statement [int[] array = new

int[2]{10,11};]. The array object can be modeled as: 〈false, int[], NewArrayExpr,

∅, {dimension 7→ 1, length0 7→ 2, 0 7→ 10, 1 7→ 11}〉. Note that even though con-

crete values are used here, they are, in fact, primitive symbolic objects representing the

concrete values. Similarly, multi-dimensional arrays can be represented as a deflated sin-

gle dimensional array. For such a representation, accessing a location, say a[row][col],

can be simply achieved by a[col + row ∗ length]. To generalize, for an array of n dimen-

sions, and length of each dimension represented as l0, l1, . . . , lk, . . . , ln−1, accessing a location

a[i0] . . . [ik] . . . [in−1] can be achieved by a[in−1 + in−2 ∗ ln−2 + . . .+ ik ∗ ln−k + . . .+ i0 ∗ l0].

Case 2 - Non-contiguous Block: Non-contiguous blocks in Java represent an object

heap. Every object in the heap will have its own block and the container can access its

children through the associated member fields. Clearly, the property-value map of our

symbolic object models the object heap without any loss of information. We saw an example

in Section 3.2.1 where the JFrame had a field called title associated to a symbolic string

object Test.

43

3.3 Interpreter

CriticAL is essentially an interpreter that executes Jimple instructions of SOOT. When a

project is analyzed, CriticAL first loads all of the classes in the project in SOOT. SOOT

then builds a stackless, three-address representation of the Java byte code, which is also

known as the Jimple Intermediate Representation (IR). For each non-API method executed

by CriticAL, it retrieves the corresponding control-flow graphs and constructs execution

paths. The Jimple instructions in each path are then symbolically executed. Hence, for the

interpreter to work, we need to support all of the Jimple instructions.

Jimple IR makes static analysis easy by reducing 256 Java Virtual Machine’s (JVM) byte

code instructions (51 reserved for future use) to 15 Jimple instructions (e.g. if statement,

assignment statement, and so on) and 36 operations (add, subtract, and so on). Each Jimple

operation has a symbolic counterpart in CriticAL with identical semantics. Figure 3.3

shows the mapping between Jimple IR and CriticAL’s counterpart. Note that in the Jimple

representation, the true boolean value is represented by the integer 1 and false by 0. We

will now present the translation and execution semantics.

3.3.1 Translation of Expressions

Translation of Jimple expressions to CriticAL expressions is straightforward since every

Jimple expression is mapped to CriticAL’s expressions. For instance, an add operation

between two integer constants in Jimple IR is interpreted as an addition of two symbolic

integer constants in CriticAL. Figure 3.4 presents the semantics of translation. Note that

the translation allows us to model the expression trees in object-oriented design. Otherwise,

we have to write a long procedural code that switches between different expression types.

3.3.2 Symbolic Execution Environment

So far, we have treated the execution environment (Ψ) as a function whose domain is a

set of Jimple values and range is a set of symbolic objects. The execution environment,

in fact, represents the execution stack and is modeled as a sequence of stack frames in the

44

Jimple Exprs CriticAL’s Counterpart
--
Constants
IntegerConstant → ConstInteger
LongConstant → ConstLong
ClassConstant → ConstClass
NullConstant → ConstNull
DoubleConstant → ConstDouble
FloatConstant → ConstFloat

Binary Expressions
EqExpr (==) → ExprEq
GeExpr (>=) → ExprGe
GtExpr (>) → ExprGt
LeExpr (<=) → ExprLe
LtExpr (<) → ExprLt
NeExpr (!=) → ExprNe
AddExpr (+) → ExprAdd
AndExpr (&) → ExprAnd
CmpExpr (cmp) → ExprCmp
CmpgExpr (cmpg) → ExprCmpg
CmplExpr (cmpl) → ExprCmpl
DivExpr (/) → ExprDiv
MulExpr (*) → ExprMul
OrExpr (|) → ExprOr
RemExpr (%) → ExprRem
ShlExpr (<<) → ExprShl
ShrExpr (>>) → ExprShr
SubExpr (-) → ExprSub
UshrExpr (>>>) → ExprUshr
XorExpr (~) → ExprXor

Unary Expressions
LengthEpr (lengthof array) → ExprLength
NegExpr (-var) → ExprNeg

Method Call Expressions
DynamicInvoke → InvokeDynamic
InstanceInvoke → InvokeInstance
StaticInvoke → InvokeStatic

Jimple Exprs CriticAL’s Counterpart
--
Object Creation Expressions
NewExpr (new T()) → ExprNew
NewArrayExpr (new T[]) → ExprNewArray
NewMultiArrayExpr (new T[][]) → ExprMultiArray

References
ArrayRef (array[i]) → RefArray
CaughtExceptionRef (catch) → RefCaughtException
InstanceFieldRef (a.field) → RefInstanceField
ParameterRef (param0) → RefParameter
StaticFieldRef (T.field) → RefStaticField
ThisRef (this) → RefThis

Other Expressions
CastExpr ((T)var) → ExprCast
InstanceOfExpr (o instanceof T) → ExprInstanceOf

Jimple Statements CriticAL’s Counterpart

AssignStmt → StmtAssign
BreakpointStmt → StmtBreakpoint
EnterMonitorStmt → StmtEnterMonitor
ExitMonitorStmt → StmtExitMonitor
GotoStmt → StmtGoto
IdentityStmt → StmtIdentity
IfStmt → StmtIf
InvokeStmt → StmtInvoke
LookupSwitchStmt → StmtLookupSwitch
NopStmt → StmtNop
RetStmt → StmtRet
ReturnStmt → StmtReturn
ReturnVoidStmt → StmtReturnVoid
TableSwitchStmt → StmtTableSwitch
ThrowStmt → StmtThrow

Figure 3.3: Jimple IR and CriticAL’s counterparts.

implementation. Let us build on the previous definition of execution environment to include

this behavior.

Definition 2 (Stack Frame). A stack frame F is represented by a tuple 〈C,Aµ,Mµ〉 where

C : 〈s, c,m〉 represents the context where s ∈ InvokeStmt ∪ AssignStmt (call site), c ∈

Resolved Classes, and m ∈ Resolved Methods; Aµ : {Parameter 7→ Argument}, where

Parameter ≡ ParameterRef ∪ ThisRef and Argument ⊆ S; and Mµ : {Local 7→ S}.

A stack frame models the execution environment of a method. The first element of the

tuple represents the context of the method (C). A context is modeled by three elements:

45

V ars ≡ Jimple Local Variables
⋃

Static Field References
Exprs ≡ Jimple Expressions
Refs ≡ Jimple References
Invks ≡ Jimple Invoke Expressions
Consts ≡ Jimple Constants
V alue ≡ V ars

⋃
Exprs

⋃
Refs

⋃
Invks

CExprs ≡ CriticAL Expressions
CRefs ≡ CriticAL References
CInvks ≡ CriticAL Invoke Expressions
CConsts ≡ CriticAL Constants
S ≡ CExprs

⋃
CRefs

⋃
CInvks

⋃
CConsts

⋃
Other Symbolic Objects

Ψ : V ars→ S ≡ Symbolic execution environment

Ts : V alue×Ψ→ S, for converting any Jimple expression to symbolic object
Tf : Jimple Field×Ψ→ S, for any non-expression to symbolic object, e.g., fields
Tt : Java Type→ CriticAL Type, for Java’s type system to CriticAL’s type system

TsJConsts,ΨK = CConsts, for Jimple constants
TsJV ars,ΨK = Ψ(V ars), for Jimple variables and static field references
TsJ?φ,ΨK = ?TsJφ,ΨK, for ? ∈ unary expressions
TsJφ1 ? φ2,ΨK = TsJφ1,ΨK ? TsJφ2,ΨK, for ? ∈ Binary expressions

TsJT.m(〈p1, p2, . . . , pn〉),ΨK = TtJT K.m(〈TsJp1,ΨK, TsJp2,ΨK, . . . , TsJpn,ΨK〉), for static
invoke expressions
TsJo.m(〈p1, p2, . . . , pn〉),ΨK = TsJo,ΨK.m(〈TsJp1,ΨK, TsJp2,ΨK, . . . , TsJpn,ΨK〉), for instance
invoke expressions

TsJnew T,ΨK = new TtJT K, for new expressions
TsJnew T [length],ΨK = new TtJT K[TsJlength,ΨK], for new array expressions
TsJnew T [l0] . . . [ln],ΨK = new TtJT K[TsJl0,ΨK] . . . [TsJln,ΨK], for new multi-dimensional
array expressions

TsJo instanceof T,ΨK = TsJo,ΨK instanceof T , for instanceof expression

TsJa[i0] . . . [in−1],ΨK = TsJa,ΨK[TsJi0,ΨK] . . . [TsJin−1,ΨK], for array references
TsJo.f,ΨK = TsJo,ΨK.Tf Jf,ΨK, for field references
TsJRefs,ΨK = CRefs, for any other references

Figure 3.4: Translation semantics of Jimple expressions to CriticAL expressions.

46

the statement that called the method associated with the frame, the resolved class for

the method, and the resolved method itself. We use Class Hierarchy Analysis (CHA) [9]

to resolve dynamic dispatch for the receiver type of a method. Given a method, and a

target class, the CHA algorithm conservatively determines a set of possible target methods

that could be executed for the call. Since we perform symbolic execution where an object

instantiated during the execution will have a known concrete type, the CHA algorithm

returns only one target method for such a case. For an object that is not initialized within

the execution environment (e.g. user inputs), CHA may resolve to more than one target

method. In such a case, each method is expanded and executed conservatively in a separate

execution environment resulting in more than one execution path. The whole execution

environment and associated symbolic objects are efficiently cloned for each execution path

(see Section 3.7 for discussion on a lazy cloning strategy for efficiency).

The second element of the tuple represents a map for binding parameters to arguments

(Aµ). The receiver object of the method is also considered as one of the arguments of the

method in our definition.

The third element of the tuple maps the Jimple local variables used in the method to

the symbolic objects (Mµ).

Definition 3 (Execution Environment). The symbolic execution environment Ψ : Φ → S

is represented internally as a tuple containing a binding between static fields and symbolic

objects and a sequence of stack frames, 〈Gµ, F0, . . . , Fk, . . . , Fn−1〉, where Gµ : {Static Field

Reference 7→ S}, Fn−1 represents the stack top for a call depth of n methods, such that

Ψ(φ) = Gµ[φ] for all φ ∈ Static Field Refs and Ψ(φ) = Fn−1.Mµ[φ] for all φ ∈ V alue −

Static Field Refs.

The lookup for static field references is delegated to Gµ and for other Jimple values

such as local variables, delegated to the top stack frame of the execution environment, i.e.

Fn−1.Mµ. Whenever a new method is executed, a new stack frame is created in the execution

environment and the mappings between parameters and arguments are established. As an

execution semantics of a return statement of the recently executed method, the top stack

47

frame is popped from the environment. If the method is returning a value, then the return

value (symbolic object) is mapped to the expecting Jimple variable in the next stack frame.

3.4 Execution Semantics

In this section, we will discuss the formal execution semantics of CriticAL for all of the

Jimple statments. Jimple statements are first translated to CriticAL’s counterparts before

execution. We will exclude the discussion about translation semantics for brevity as they

are straightforward (see Figure 3.3) and concentrate on their execution semantics in this

section. Before delving into the details of execution semantics, let us define a program state.

Definition 4 (Program State). The state of a program during a symbolic execution is

represented by the pair 〈Ψ, P 〉, where Ψ is the execution environment and P is the path

condition represented as a set of predicates that hold in the path.

Note that the arguments to a predicate represent free variables or a concrete value

(further discussed in Section 3.5). The execution of a statement may modify Ψ and/or P .

3.4.1 Identity Statement

In Jimple IR, the identity statement assigns ThisRef and ParameterRef to Jimple local

variables 3. For a non-static method m(int a, int b), the Jimple translation (close but

not exact) looks like the following:

this := @ThisRef;

a := @ParameterRef0;

b := @ParameterRef1;

...

Figure 3.5 in Section 3.4.5 shows the translation of a static method in Java to Jimple IR that

contains examples of identity statements. Note that Jimple IR is a stack-less representation

of Java byte code, which necessitate the use of the identity statement for representing the

3Note that we ignore CaughtExceptionRef on the right hand side of the identity statement in the current
implementation.

48

receiver object (this) and the parameters (a, b). For a static method, there will be no this

:= @ThisRef; in the translation. Now consider an identity statement v := Ref, where Ref

≡ ThisRef ∪ ParameterRef. There are two cases to handle:

Case 1: Entry Methods

An entry method is the method from which a symbolic execution starts. For an entry

method (n = 1), there is no binding between parameters and arguments in the top stack

frame of the execution environment (n = 1∧Ψ.Fn−1.Aµ = ∅). The execution semantics for

such an identity statement is as follows:

〈Ψ, P 〉, [v := Ref]⇒E 〈Ψ[Fn−1.Mµ[v 7→ 〈true, τ, Ref, ∅, µ〉]], P 〉 (3.1)

where ⇒E represents execution of the identity statement, the true value in the binding

represents an open symbolic object (non-deterministic), τ is the known type derived from

the Ref expression, ∅ represents unknown concrete value, and µ represents the property-

value map, which is empty. Note that the binding between the Jimple variable and the

newly created symbolic object happens in the top stack frame Fn−1. Also note that the

corresponding type for the symbolic object is first looked up in CriticAL’s extension plugins

and then initialized. If none of the extension plugins support the required type, then

CriticAL creates a default symbolic object with the given type information.

Case 2: Non-entry Methods

For a non-entry method (n > 1), there are bindings between parameters and arguments in

the top stack frame. The execution semantics for such an identity statement is as follows:

〈Ψ, P 〉, [v := Ref]⇒E 〈Ψ[Fn−1.Mµ[v 7→ Fn−1.Aµ[Ref]]], P 〉 (3.2)

49

3.4.2 Assignment Statement

The left hand side of an assignment statement can be one of the four kind of expressions:

local variables, static field references, instance field reference, and array references. The right

hand side can be any Jimple expressions. We will now present the execution semantics for

all four expressions on the left hand side of the assignment statement.

Semantics for Left Hand Side Expressions

Case 1: Assignment to a Local Variable

〈Ψ, P 〉, [l = φ]⇒E 〈Ψ[Fn−1.Mµ[l 7→ TsJφ,ΨK], P 〉 (3.3)

Case 2: Assignment to a Static Field Reference

〈Ψ, P 〉, [T.f = φ]⇒E 〈Ψ[Gµ[T.f 7→ TsJφ,ΨK], P 〉 (3.4)

Case 3: Assignment to an Instance Field Reference

TsJo,ΨK⇒E s

〈Ψ, P 〉, [o.f = φ]⇒E 〈Ψ[s.µ[Tf Jf,ΨK 7→ TsJφ,ΨK]], P 〉
(3.5)

Case 4: Assignment to an Array Reference

TsJa,ΨK⇒E s

〈Ψ, P 〉, [a[i] = φ]⇒E 〈Ψ[s.µ[TsJi,ΨK 7→ TsJφ,ΨK]], P 〉
(3.6)

Semantics for Right Hand Side Expressions

The translation semantics in Figure 3.4 recursively translates expression trees to their leaf

elements, however, not all of the leaf-elements may be evaluated as constants. Hence, for

non-constant leaf-elements in an expression tree, we need to specify their execution seman-

tics. We will now present case-by-case recursive rules for the evaluation of TsJφ,ΨK for such

cases.

50

Case 1: φ ∈ Local Variables

TsJφ,ΨK⇒E Ψ.Fn−1.Mµ[φ] (3.7)

Case 2: φ ∈ Static Field References

TsJφ,ΨK⇒E Ψ.Gµ[φ] (3.8)

Case 3: φ ∈ Unary Expressions

There are two kinds of unary expressions:

1) Negative Expression:

TsJφ,ΨK⇒E s

−TsJφ,ΨK⇒E

 −s | (−s).ω = true if s.ω = true

〈s.ω, s.τ, s.φ,−(s.ϑ), ∅〉 otherwise

(3.9)

The first case in Rule 3.9 represents an open object s which is not created within the sym-

bolic execution environment. Hence, the negation of such an open object is not concretized

(or evaluated). In the second case, however, s is known and its concrete value is used to

evaluate the negation expression and a replica of the −s object is created to represent the

result.

2) Lengthof Expression:

TsJφ,ΨK⇒E s, l = 〈true, int, lengthof φ, ∅, µ〉

lengthof TsJφ,ΨK⇒E


s.µ[lengthd] if s.µ[lengthd] 6= ∅

l | s.µ[lengthd] = l otherwise

(3.10)

Note that the value of the dimension d of the array can be obtained from the Jimple ex-

pression. The first case in Rule 3.10 implies that the length of the dth dimension is known

and already bound to a symbolic value (see Section 3.2.3 for the representation of an array).

51

If that binding does not exist, then the array object must be open (second case), hence, a

new symbolic open value is created to represent the unknown length and the new binding

for the length is established in s.

Case 4: φ ∈ Binary Expressions

There are two cases for binary expressions:

1) Conditional Expressions:

TsJφ1,ΨK⇒E s1, TsJφ2,ΨK⇒E s2

s1 ? s2 ⇒E


s1 ? s2 | (s1 ? s2).ω = true if s1.ω = true ∨ s2.ω = true

〈false, boolean, (s1 ? s2).φ, s1.ϑ ? s2.ϑ, ∅〉 otherwise

(3.11)

2) Numeric Expressions:

TsJφ1,ΨK⇒E s1, TsJφ2,ΨK⇒E s2

s1 ? s2 ⇒E


s1 ? s2 | (s1 ? s2).ω = true if s1.ω = true ∨ s2.ω = true

〈false, τh, (s1 ? s2).φ, s1.ϑ ? s2.ϑ, ∅〉 otherwise, where τh ≡ type of s1.ϑ ? s2.ϑ

(3.12)

Note that τh in the second case of Rule 3.12 represents the concrete type resulting from the

evaluation of the expression.

Case 5: φ ∈ New Expressions

There are three kinds of new expressions:

1) New Type Expression:

new TtJT K⇒E 〈false, T, new T, ∅, µ〉 (3.13)

creates a new symbolic object after looking up in the registered extension plugins for the

new type. If the type is not supported, then a default symbolic object is created with the

52

type information.

2) New Array Expression:

TsJlength,ΨK⇒E l, d1 = 〈false, int, φ, 1, ∅〉
new TtJT K[TsJlength,ΨK]⇒E

〈false, T, new T [length], ∅, µ[dimension 7→ d1, length0 7→ l]〉
(3.14)

3) New Multi-Array Expression:

TsJlk,ΨK⇒E l
′
k, dn = 〈false, int, φ, n, ∅〉

new TtJT K[TsJl0,ΨK] . . . [TsJln,ΨK]⇒E

〈false, T, new T [l0] . . . [ln−1], ∅, µ[dimension 7→ dn, length0 7→ l′0, . . . , lengthn−1 7→ l′n−1]〉

(3.15)

where the dimension n is obtained from the Jimple expression.

Case 6: φ ∈ References

The references that may exist on the right hand side of assignment statements are: Static-

FieldRef, InstanceFieldRef, and ArrayRef. Other references (ThisRef, ParameterRef,

and CaughtExceptionRef) can only exist on the right hand side of identity statements,

which we have already dealt with in Section 3.4.1. Furthermore, StaticFieldRef is han-

dled by Rule 3.8. Let us now specify the semantics for the remaining two cases:

1) Instance Field References:

TsJo,ΨK⇒E o
′, Tf Jf,ΨK⇒E f

′

TsJo,ΨK.Tf Jf,ΨK⇒E o′.µ[f ′]
(3.16)

where o′.µ[f ′] = 〈true, Tfield, o.f, ∅, µ〉 if o′.ω = true where Tfield is the type derived from

the field reference Jimple expression. Note that o′ is a symbolic object and f ′ represents

53

the field f of o′.

2) Array References:

TsJa,ΨK⇒E a
′, TsJik,ΨK⇒E i

′
k, i
′
n−1 + i′n−2 ∗ ln−2 + . . .+ i′0 ∗ l0 ⇒E γ

TsJa,ΨK[TsJi0,ΨK] . . . [TsJin−1,ΨK]⇒E a′.µ[γ]

where a′.µ[γ] = 〈true, Tγ , a[i0] . . . [in−1], ∅, µ〉 if a′.ω = true where Tγ is the type derived

from the Jimple array reference expression. Note that for an array of n dimensions, the

length of each dimension is represented as l0, . . . , ln−1 and are bound to symbolic values in

a′. The length expressions are evaluated using Rule 3.10.

Case 7: φ ∈ Casting Expression

Let us deal with a case that has a local variable on the left hand side. This case can be

easily generalized to references using Rules 3.4-3.6.

TsJφ,ΨK⇒E s

〈Ψ, P 〉, [l = (T)φ]⇒E


〈Ψ[Fn−1.Mµ[l 7→ s], P{T E s.τ}〉 if s.ω = false

〈Ψ[Fn−1.Mµ[l 7→ s], P 〉 | s.τ = T if s.ω = true ∧ T B s.τ

〈Ψ[Fn−1.Mµ[l 7→ s], P 〉 otherwise.

(3.17)

In Rule 3.17,L E R means that L is a super-type or exact type of R and L B R means

that L is a strict sub-type of R. If s is a known object whose type information is concrete,

then we use the type hierarchy information provided by Eclipse’s JDT (Java Development

Tools) 4 to check the path-condition during the execution. If the path-condition is un-

satisfiable CriticAL informs the user about ClassCastException. If s is open, then we

bind s to the new type T if T is a strict subtype of the known type for s. Note that even

though this binding accumulates more precise information about the type of s, it may also

introduce unsoundness if the casting should indeed fail for s in the actual run of the program.

4http://www.eclipse.org/jdt/

54

http://www.eclipse.org/jdt/

Case 8: φ ∈ Instanceof Expression

TsJo,ΨK⇒E o
′, b = o′ instanceof T,

t = 〈false, boolean, φtrue, 1, ∅〉, f = 〈false, boolean, φfalse, 0, ∅〉

TsJo,ΨK instanceof T ⇒E


t, if o′.τ D T

f, if s.ω = false ∧ ¬(o′.τ D T)

b | b.ω = true otherwise

(3.18)

We we will discuss Case 9: φ ∈ Invoke Expression as a following separate subsection as

it is an important part of CriticAL’s execution semantics.

3.4.3 Executing Invoke Expressions

There are three kinds of invoke expressions or method calls: InstanceInvokeExpr, StaticI-

nvokeExpr, and DynamicInvokeExpr. Note that InstanceInvokeExpr has three more sub-

types (InterfaceInvokeExpr, SpecialInvokeExpr, and VirtualInvokeExpr), neverthe-

less, we handle all three in the InvokeInstance expression of CriticAL.

Note that an extension plugin is a set of types that are implemented as Java classes.

The purpose of each of them is to abstractly interpret the behavior of a corresponding API

type. Given a method call, CriticAL checks if the method is declared in one of the user

created application classes in the project being analyzed. CriticAL expands such a method

by pushing a new stack frame in the execution environment and performing parameters to

arguments binding for the method. If the method is not declared in one of the application

classes, then CriticAL looks up in the registered extension plugins for the Java type that

declares the method. The execution semantics of a supported API-method is specified

within the method of the Java type, which gets executed for the call. For such an API

method call, the extension plugin developer may modify the receiver and the parameters of

the method (bound to corresponding symbolic arguments) and return a symbolic value as

a part of the execution semantics of the API method.

55

If the registered plugins do not have support for the method, then CriticAL creates a

default open symbolic object as a return value to the method call. Such an open object

can also be used to model user inputs statically. We will now present semantics for both

executing an unexpanded method call as well as an expanded method call.

1) Unexpanded Method Call:

TsJo,ΨK⇒E o
′ (receiver), TsJpk,ΨK⇒E p

′
k (parameters)

TsJo,ΨK.m(〈TsJp1,ΨK, TsJp2,ΨK, . . . , TsJpn,ΨK〉)⇒E


γuser ifm ∈ TtJo′.τK

γdefault otherwise

(3.19)

where γuser is the user-defined return value resulting from the direct execution of the cor-

responding method in the TtJo′.τK class of a registered extension plugin. A good analogy

of this mechanism is the way in which Java deals with native methods whose code is not

a part of the Java Virtual Machine (JVM) but gets executed when the JVM executes the

corresponding method call. Similarly, CriticAL also executes the code directly.

If m is not supported in the corresponding CriticAL’s extension plugin class (TtJo′.τK),

then a default open symbolic object is returned (γdefault = 〈true, (o′.m(p′1, . . . , p
′
n)).τ,

o.m(p1, . . . , pn), ∅, µ〉). Note that the semantics for handling a static method is almost

the same. The only difference is that there will be no receiver object and CriticAL will look

for the corresponding static method in the TtJT K class of a registered extension plugin.

2) Expanded Method Call:

For an expanded method call, the return value is not known until a return statement is

executed. Hence, the binding between the expecting local variable and the return value

is not established. However, a new stack frame F is pushed with the necessary context

56

information C and bindings between parameters and arguments Aµ.

TsJo,ΨK⇒E o
′ (receiver), TsJpk,ΨK⇒E p

′
k (parameters)

〈Ψn=k, P 〉,[l = o.m(p1, . . . , pn)]⇒E

〈Ψn=k+1, P 〉 | Ψn=k+1.Fn−1.Aµ[this 7→ o′, p1 7→ p′1, pn 7→ p′n]

Note that the semantics for handling static method is almost the same here as well. The

only difference is that there will be no this 7→ o′ in Ψn=k+1.Fn−1.Aµ.

3.4.4 Return Statements

The expanded method call as seen in Rule 3.20 does not bind the return value to the

expecting local variable of the caller’s frame. The return statement performs this binding

after popping the top stack frame out of the execution environment.

TsJr,ΨK⇒E γ (return value), [l = o.m(p1, . . . , pn)] (call site)

〈Ψn=k, P 〉, [return r]⇒E 〈Ψn=k−1, P 〉 | Ψn=k−1.Fn−1.Mµ[l 7→ γ]
(3.20)

where the call site can be accessed using Ψ.Fn−2.C.s. Note that for an entry method there

is no call site, hence we only pop the top stack frame without performing any binding 5.

The same is true for ReturnVoidStmt which does not return a value. Also note that an

InvokeStmt encapsulates an InvokeExpr which does not return a value and is treated in

the same fashion. For a value retuning method, Jimple guarantees that the return value is

assigned to a local variable through an AssignStmt, even if the code at the Java-level does

not have such an assignment.

3.4.5 If Statement

All of the Jimple statements that we have handled so far have only one successor statement

in the control-flow graph (except return statements that have none). IfStmt has two suc-

cessors: one when the conditional expression (binary expression) in the IfStmt is evaluated

to true, and the other when the conditional expression is evaluated to false. If the operands

5An entry method is the method from which the symbolic execution started.

57

public static int minMod2(int a, int b)
{
 int aMod = a % 2;
 int bMod = b % 2;
 return (aMod < bMod)?aMod:bMod;
}

public static int minMod2(int, int) {
 int a, b, aMod, bMod, r;
 a := @parameter0: int;
 b := @parameter1: int;
 aMod = a % 2;
 bMod = b % 2;
 if aMod < bMod goto label0;
 goto label1;
 label0:
 r = aMod;
 goto label2;
 label1:
 r = bMod;
 label2:
 return r;
}

a := @parameter0: int;
b := @parameter1: int;
aMod = a % 2;
bMod = b % 2;
if aMod < bMod goto label0;
r = aMod;
goto label2;
return r;

a := @parameter0: int;
b := @parameter1: int;
aMod = a % 2;
bMod = b % 2;
if aMod < bMod goto label0;
goto label1;
r = bMod;
return r;

Path 1 Condition: (p
0
 % 2 < p

1
 % 2)

Path 2 Condition: ¬ (p
0
 % 2 < p

1
 % 2)

(Jimple IR)

<

aMod

%

p
0

2a

bMod

%

p
1

2b

Expression tree for the conditional expression in IfSmt

(Java Code)

(true)

(true)

Figure 3.5: Path conditions generated for the IfStmt containing open symbolic objects.

of the binary expression are concrete (not open) during symbolic execution, then we will get

a concrete result (true or false) easily using the second case of Rule 3.12. However, when

one of the operands is open, then the first case of Rule 3.12 applies and we have to rely on

a constraint solver to test the satisfiability of the path condition. If the constraint solver

says both conditions are satisfiable, then we need to process two paths: the first path will

assume the condition is satisfiable and executes the next statement corresponding to the

true-branch, the second path will assume the condition is not satisfiable and executes the

statement corresponding to the false-branch.

Figure 3.5 illustrates these concepts with the help of a simple method that calculates

the minimum mod-2 of the two parameters (a and b). Path 1 in the figure corresponds to

the true-branch and Path 2 corresponds to the false-branch. Note that since the current

implementation of CriticAL does not have a constraint solving module, we assume that both

paths are feasible. However, in the future implementation, we would repeat this process

58

and accumulate the path conditions and constraint solve at every open condition in the

program. If the constraint solver says that a path condition is unsatisfiable then we assume

the path is infeasible and halt the symbolic execution of the corresponding path.

We will now specify the semantics of IfStmt formally. Let pc be the symbolic con-

dition evaluated using Rule 3.12; if(pc) →cf {ST , SF } represents the control-flow of the

if statement to its successor statements corresponding to the true and the false branches,

respectively; and t = 〈false, boolean, φtrue, 1, ∅〉 represents the true symbolic value. There

are two cases:

Case 1: Known Symbolic Condition (pc.ω = false)

〈Ψ, P 〉, [if(pc)], [if(pc)→cf {ST , SF }]⇒E


〈Ψ, P 〉, [ST] if pc = t

〈Ψ, P 〉, [SF] otherwise

(3.21)

Case 2: Open Symbolic Condition (pc.ω = true)

〈Ψ, P 〉, [if(pc)], [if(pc)→cf {ST , SF }]⇒E


〈Ψ, PT | P ∪ {pc}〉, [ST] if sat PT

〈Ψ, PF | P ∪ {¬pc}〉, [SF] if sat PF

〈Ψ, P 〉, [∅] otherwise (terminate)

(3.22)

Note that Ψ in the first two cases of Rule 3.22 is cloned to avoid any side-effects using

Algorithm 1 (Section 3.7). Also note that only Ψ is cloned but not the symbolic objects

contained in it until a mutate operation is carried out on one of the shared symbolic objects

(Algorithm 2, Section 3.7). Section 3.7 presents an efficient cloning strategy to minimize

the memory consumption due to cloning and maximize the sharing between clones of an

execution environment.

That covers the semantics of all of the important Jimple statements. Note that Lookup-

SwitchStmt and TableSwitchStmt, variants of Java’s switch-case statement, are handled

using semantics identical to IfStmt and are elided in our discussion. Thread synchro-

nization related statements: EnterMonitorStmt and ExitMonitorStmt correspond to the

59

Java’s synchronized block, which we ignore in the current implementation of CriticAL. Sim-

ilarly, other remaining statements: BreakpointStmt, GotoStmt, NopStmt, RetStmt, and

ThrowStmt contribute to the control-flow and do not update our execution environment

and hence are ignored. Nevertheless, we take into account their effect on the control-flow

during execution.

3.5 A Glimpse at the Constraint Solving Module

The main function of the constraint solving module in CriticAL would be to prune infeasible

paths. However, with the constraint solving module in place, CriticAL could be used

for bounded program verification as well. In this section, we will present a preliminary

discussion on the translation process of CiritcAL’s symbols to predicate logic (First-Order)

that can be constraint solved using a generic constraint solver such as Yices [14] and Choco 6.

We will reuse the example in Figure 3.5 to discuss this process. Here are the rules for

translation:

1. An open, leaf symbolic object (s | s.φ ∈ {ThisRef, ParameterRef, StaticFieldRef,

InvokeExpression} will be modeled as a free logic variable. Note that InvokeExpres-

sion here is an unexpanded method call. Also note that conditional expressions guar-

antee that either primitive types or references of composite types are being compared.

In the case of the instanceof expression, containment relations between two types

are checked. Assuming Java types can be modeled using sets, there is no fundamen-

tal difficulty in representing conditional expression checking subtypes as a predicate

checking subset. Similarly, references can be modeled using integers. Most of the con-

straint solvers support operations on these primitive types and hence can be modeled.

2. Given a conditional expression φ1 ? φ2, we will recursively look up bindings for φ1

and φ2 in Ψ until we reach leaf-elements, thus, constructing an expression tree. For

instance, in Figure 3.5, the condition aMod < bMod was expanded to the expression

6http://sourceforge.net/projects/choco

60

http://sourceforge.net/projects/choco

tree by recursively looking up bindings for local variables until leaf elements are en-

countered. Note that every symbolic object has the corresponding Jimple expression

that evaluated it (s.φ) to make this process possible.

3. All of the open-symbolic objects are declared as a free variable, concrete values are

used as is, and operators are used as is to construct predicates. In the case of Fig-

ure 3.5, the logic model for checking satisfiabitlity at the IfStmt for the true-branch

(Path 1) would look like the following:

int p0, p1 // Free variable declarations

p0 % 2 < p1 % 2 // Path Condition

sat // Checking satisfiability

The constraint solver would answer satisfiable as it can find a satisfying assignment

for p0 and p1. The solver would answer satisfiable for the model of Path 2 as well.

Hence, the constraint solving approach does not yield much over the existing conser-

vative approach of CriticAL for this example because both of them do not prune any

path. While this example does not show any advantage of constraint solving, however,

constraint solving may become more useful when the same variables are constrained

with multiple path conditions.

Note that this is just a glimpse at the future work of the constraint solving module and

we do not claim this module as a contribution of this thesis. There may be some details

that need to be researched further. We did not invest our effort in the constraint solving

module because we have not yet found a convincing example from the Swing forum that

would benefit from a constraint solver. The reuse nature of API-client code involve multiple

calls to API methods rather than code for implementing low-level algorithms that involves

multiple condition checking on the same API object.

61

3.6 Unrolling Loops

Loops need to be handled specially during symbolic execution. It may be possible to

completely execute a loop with the actual number of iterations based on its loop condition

if the condition does not involve open symbolic objects. However, most of the critiques could

be produced in a small number of iterations. Hence, it may be desirable to unroll a loop up

to a small bound to curb path explosion. Several symbolic execution techniques [11,12,38]

as well as bounded program verification techniques [62] employ this strategy. CriticAL also

uses this strategy and unrolls a loop twice in a path, i.e., allows three repetitions of a loop

condition in a path (can be configured by a user). Similarly, to tackle against recursive

methods, CriticAL allows limiting the depth of the method call. Note that unrolling a loop

n times may introduce unsoundness especially when a client code would produce critiques

on the (n+1)st iteration, however, the same is true with any symbolic execution techniques

that employ similar approach.

Let us illustrate the loop unrolling behavior with an example as shown below:

S1; while(C) S2; S3;

CriticAL will execute the following three paths for this code assuming that C is open:

1. S1; ¬C; S3;

2. S1; C; S2; ¬C; S3;

3. S1; C; S2; C; S2; ¬C; S3;

3.7 Maximal Sharing Strategy

We have previously discussed in Section 3.4.5 that the execution environment (or Stack)

needs to be cloned after encountering an open condition in an IfStmt. We assumed that

all of the stack frames and corresponding symbolic objects are cloned to avoid any side-

effects from sharing them in the multiple stacks. However, in the actual implementation,

even though the stack and stack frames are cloned, symbolic objects are shared by multiple

62

stacks until one of the execution stacks updates the objects. Just before the update, the

corresponding symbolic objects are cloned for the executing stack. We use proxy patterns

with lazy initialization to achieve this maximal sharing behavior.

The design of this strategy requires maintaining two kinds of reverse pointers in symbolic

objects:

Reverse Stack Pointer Every symbolic object maintains a set of reverse stack pointers

to the stack frames that bind it to Jimple local variables and is represented by the

following tuple: 〈F∗, V alue〉, where F∗ ∈ Ψ and V alue ≡ Jimple V alue. Using reverse

stack pointers a symbolic object can find out all of the stack frames that share it.

Reverse Heap Pointer Every symbolic object maintains a set of reverse heap pointers

to the symbolic objects that contain it and is represented by the following tuple:

〈Pt, S〉, where Pt ∈ {“Key”, “V alue”} and S is the container object which contains

the symbolic object as a key or value in its µ or as an element of its custom data

structure. Using reverse heap pointers a symbolic object can find all of its containers

in the heap.

We will now define some important terms related to symbolic objects:

Definition 5 (Symbolic Objects Extended). Lets us extend our definition of symbolic ob-

jects in Definition 1 (Section 3.2) to include reverse pointers as s : 〈ω, τ, φ, ϑ, µ,Υψ,Υh, SΨ〉,

where Υψ is the set of reverse stack pointers, Υh is the set of reverse heap pointers, and SΨ

is the set of stacks that share the object.

Definition 6 (Containers, P 1 : s × Ψ → G). The containers (or parents) of a symbolic

object s in Ψ is a set of symbolic objects G | ∀e ∈ G ∃p ∈ s.Υh(p.S = e ∧Ψ ∈ e.SΨ).

The containers of a symbolic object s are all of the symbolic objects that contains s

and belongs to the same execution environment Ψ as that of s. We could easily evaluate

containers using the reverse heap pointer as specified in Definition 5.

Definition 7 (Transitive Closure of Containers, P+ : s × Ψ → G). The transitive closure

of containers of a symbolic object s in Ψ is a set of symbolic objects G, defined as:

63

P+(s,Ψ) =


∅ if |P 1(s,Ψ)| = 0

P 1(s,Ψ)
⋃
e∈P 1(s,Ψ) P

+(e,Ψ) otherwise.

Definition 8 (Reflexive Transitive Closure of Containers, P ∗ : s×Ψ→ G). The reflexive

transitive closure of containers of a symbolic object s in Ψ is a set of symbolic object G,

defined as: P ∗(s,Ψ) = {s} ∪ P+(s,Ψ).

Similarly, we can trivially evaluate immediate children of a symbolic object (C1 : s×Ψ→

G), transitive closure of children (C+ : s × Ψ → G), and reflexive transitive closure of

children (C∗ : s×Ψ→ G) using s.µ. Using these definitions, let us discuss two algorithms

that contribute to the lazy cloning and maximal sharing behavior.

Algorithm 1 Cloning an Execution Environment, clone : Ψ→ Ψ.

Require: Ψc, the current execution environment
Require: Ψ′c, empty execution environment

1: for all stack frames Fi ∈ Ψc do
2: F ′i ← 〈Fi.C,A′µ,M ′µ〉 {A′µ and M ′µ are shallow copy of Fi.Aµ and Fi.Mµ, resp.}
3: push F ′i → Ψ′c
4: for all pairs k 7→ v ∈ F ′i .Mµ do
5: {Mark the reachable objects of v as being shared by the new stack Ψ′c}
6: for all e ∈ C∗(v,Ψc) do
7: e.SΨ ← e.SΨ ∪ {Ψ′c}
8: e.Υψ ← e.Υψ ∪ {〈F ′i , k〉}
9: end for

10: end for
11: end for
12: return Ψ′c

When CriticAL encounters a branch, it clones the current stack so that the cloned

version can be used in the other branch (Algorithm 1). Note that only the stack is cloned

at this point but symbolic objects remain shared between the two clones. When a symbolic

object is mutated in one of the stacks, then we selectively clone all of the symbolic objects

that are ancestors of the symbolic objects being mutated (Algorithm 2).

Algorithm 1 discusses cloning of the execution stack (clone : Ψ → Ψ). Figure 3.6

illustrates the result of applying the algorithm on a sample code. The cloning starts at

64

l
1
 → o

1
 : S

Ψ
{Ψ}

l
2
 → o

2
 :

S

Ψ
{Ψ}

l
3
 → o

3
 : S

Ψ
{Ψ}

Stack (Ψ)

Ψ

(F

0
) Ψ'

(F

0
)

l
1
 → o

1
 : S

Ψ
{Ψ, Ψ'}

l
2
 → o

2
: S

Ψ
{Ψ, Ψ'}

l
3
 → o

3
: S

Ψ
{Ψ, Ψ'}

o
1
.μ {f → o

2
}

o
1
.ϒ

Ψ
{<Ψ.F

0
, l

1
>, <Ψ'.F

0
, l

1
>}

o
2
.μ {f → o

3
}

o
2
.ϒ

h
{<“Value”, o

1
>}

o
2
.ϒ

Ψ
{<Ψ.F

0
, l

2
>, <Ψ'.F

0
, l

2
>}

o
3
.ϒ

h
{<“Value”, o

2
>}

o
3
.ϒ

Ψ
{<Ψ.F

0
, l

3
>, <Ψ'.F

0
, l

3
>}

The final state of o
1
, o

2
, and o

3
 after Algorithm 1 ends.

o
1
, o

2
, and o

3
 are shared by the two stacks.

 O
1
 l

1
 = new O

1
();

 O
2
 l

2
 = new O

2
();

 O
3
 l

3
 = new O

3
();

 l
1
.f = l

2
;

 l
2
.f = l

3
;

 if(C) (Algorithm 1 starts here)
 print l

3
.f;

 l
2
.g = … (Algorithm 2 starts here)

l
1
 → o

1
 : S

Ψ
{Ψ, Ψ'}

l
2
 → o

2
: S

Ψ
{Ψ, Ψ'}

l
3
 → o

3
: S

Ψ
{Ψ, Ψ'}

o
1

o
2

o
3

f

fValue

Value

Before Algorithm 1

l
1
 →

l
2
 →

l
3
 →

<Ψ.F
0
, l

1
>

<Ψ.F
0
, l

2
>

<Ψ.F
0
, l

3
>

Ψ

o
1

o
2

o
3

f

f

After Algorithm 1

l
1
 →

l
2
 →

l
3
 →

Ψ'

l
1
 →

l
2
 →

l
3
 →

Ψ

<Ψ.F
0
, l

1
> <Ψ'.F

0
, l

1
>

<Ψ.F
0
, l

2
>

<Ψ'.F
0
, l

2
>

<Ψ.F
0
, l

3
>

<Ψ'.F
0
, l

3
>

Forward Heap Pointer

Forward Stack Pointer

Reverse Heap Pointer

Reverse Stack Pointer

Figure 3.6: Illustration of Algorithms 1 on a sample code.

the If statement, which clones the current execution stack Ψ to produce Ψ′. Note that the

stack frame of the two stacks only maintains a shallow copy of the maps (Aµ and Mµ), thus,

sharing the same copy of the symbolic objects. The object heap of each symbolic object is

then marked as being shared by the two stacks: Ψ and Ψ′.

In this way, even though the execution environment is cloned, the symbolic objects are

not immediately cloned. When a symbolic object is about to be mutated, CriticAL will

force the cloning of the object if it is shared by multiple stacks. Algorithm 2 communicates

the major ideas behind the cloning algorithm for symbolic objects (clone : S × Ψ → S).

65

Figure 3.7 shows the algorithm in action reusing the same sample code of Figure 3.6. Note

that Algorithm 2 does not start until the code mutates the object o2. The algorithm first

recursively reaches the top-most ancestors in the object graph of the symbolic object being

cloned. It then starts the cloning from the top-most ancestor by updating the object’s

reverse stack and heap pointers. The process continues until the algorithm reaches the

starting symbolic object. Note that even though o1 and o2 are cloned, o3 is still shared.

Hence, we achieve maximum sharing with the help of this lazy cloning strategy.

3.8 Non-Escaping Newly Created Objects

A stack frame besides 〈C,Aµ,Mµ〉 (see Definition 2) also maintains a set of newly created

objects (using the new operator) during the execution of the corresponding method. Based

on this set we can evaluate whether a newly created object escapes the method boundary.

An object can escape the method boundary if it is assigned to a global variable (static

field), if it is a part of the heap of the this object, or if it is a part of the heap of one of

the parameters of the method. CriticAL allows us to enforce API-logic at various points

of interest including the end of a method. Knowing non-escaping objects may help in

identifying problems immediately at the end of a method, the information, which otherwise

may be lost at the end of the path.

Let us extend Definition 2 as F : 〈C,Aµ,Mµ, N〉, where N is the set of newly created

objects. Let Fm ∈ Ψ be the stack frame for an instance method m, this be the symbolic

object for the receiver and p1, . . . , pn be the symbolic objects for parameters of the method.

Also let SF = {v : f 7→ v ∈ Ψ.Gµ} and Usf =
⋃
e∈SF

C∗(e,Ψ) The non-escaping newly

created objects set is defined as:

NE
NCO(Fm) =


Ψ.Fm.N m ≡ entry

Ψ.Fm.N − C∗(this,Ψ)− C∗(p1,Ψ)− . . .− C∗(pn,Ψ)− Usf otherwise

(3.23)

Note that at the end of the method when the top stack frame Fn−1 is popped, Fn−2 updates

66

Algorithm 2 Cloning a Symbolic Object, clone : Ψ× S → S.

Require: Ψc, the current execution environment
Require: s, the symbolic object to be cloned

1: for all o ∈ P 1(s,Ψc) do
2: clone(o,Ψc) {Recursively clone parents}
3: end for
4: {Assume that we maintain a list of processed objects to avoid cycles}
5: if Ψc /∈ s.Sψ ∨ |s.Sψ| = 1 then
6: return s {Does not need to be cloned}
7: end if
8: s′ ≡ The shallow copy of s where s′.µ, s′.Υψ, s

′.Υh, and s′.SΨ are all new empty sets.
9: {Re-establish information about the stack for the clone and the original}

10: for all p ∈ s.Υψ do
11: if p.F∗ ∈ Ψc then
12: s′.Υψ ← {〈p.F∗, p.V alue〉}
13: p.F∗[p.V alue] = s′

14: s′.Sψ ← {Ψc}
15: s.Sψ ← s.Sψ − {Ψc}
16: remove p from s.Υψ

17: end if
18: end for
19: {Add the reverse heap pointers information in children}
20: for all k 7→ v ∈ s.µ do
21: s′.µ← s′.µ ∪ {k 7→ v}
22: k.Υh ← k.Υh ∪ {〈“Key”, s′〉}
23: v.Υh ← v.Υh ∪ {〈“V alue”, s′〉}
24: end for
25: {Remove extra heap pointers and update parents about the newly cloned child}
26: for all h ∈ s.Υh do
27: if Ψc ∈ h.S.Sψ then
28: remove h from s.Υh

29: end if
30: end for
31: for all h ∈ s′.Υh do
32: if Ψc /∈ h.S.Sψ then
33: remove h from s′.Υh

34: else if h.Pt = “Key” then
35: v = remove(h.S.µ[s])
36: h.S.µ[s′] = v
37: else
38: {h.Pt = “V alue”}
39: for all k 7→ s ∈ h.S.µ do
40: h.S.µ[k] = s′

41: end for
42: end if
43: end for
44: return s′

67

o
1
.μ {f → o

2
}

o
1
.ϒ

Ψ
{<Ψ.F

0
, l

1
>, <Ψ'.F

0
, l

1
>}

o
2
.μ {f → o

3
}

o
2
.ϒ

h
{<“Value”, o

1
>}

o
2
.ϒ

Ψ
{<Ψ.F

0
, l

2
>, <Ψ'.F

0
, l

2
>}

o
3
.ϒ

h
{<“Value”, o

2
>}

o
3
.ϒ

Ψ
{<Ψ.F

0
, l

3
>, <Ψ'.F

0
, l

3
>}

(Applying Algorithm 2 to clone : o
2
)

clone (o
2
,Ψ')

o
2
.μ {f → o

3
}

o
2
.ϒ

h
{<“Value”, o

1
>}

o
2
.ϒ

Ψ
{<Ψ.F

0
, l

2
>, <Ψ'.F

0
, l

2
>}

o
3
.ϒ

h
{<“Value”, o

2
>}

o
3
.ϒ

Ψ
{<Ψ.F

0
, l

3
>, <Ψ'.F

0
, l

3
>}

o
1
.μ {f → o

2
}

o
1
.ϒ

Ψ
{<Ψ.F

0
, l

1
>, <Ψ'.F

0
, l

1
>}

o
1
.μ {f → o

2
}

o
1
.ϒ

Ψ
{<Ψ.F

0
, l

1
>}

o'
1
.μ {f → o

2
}

o'
1
.ϒ

Ψ
{<Ψ'.F

0
, l

1
>}

o
2
.μ {f → o

3
}

o
2
.ϒ

h
{<“Value”, o

1
>, <“Value”, o'

1
>}

o
2
.ϒ

Ψ
{<Ψ.F

0
, l

2
>, <Ψ'.F

0
, l

2
>}

o
2
.μ {f → o

3
}

o
2
.ϒ

h
{<“Value”, o

1
>}

o
2
.ϒ

Ψ
{<Ψ.F

0
, l

2
>}

o'
2
.μ {f → o

3
}

o'
2
.ϒ

h
{<“Value”, o'

1
>}

o'
2
.ϒ

Ψ
{<Ψ'.F

0
, l

2
>}

o
3
.ϒ

h
{<“Value”, o

2
>, <“Value”, o'

2
>}

o
3
.ϒ

Ψ
{<Ψ.F

0
, l

3
>, <Ψ'.F

0
, l

3
>}

o
1
.μ {f → o

2
}

o
1
.ϒ

Ψ
{<Ψ.F

0
, l

1
>}

o'
1
.μ {f → o'

2
}

o'
1
.ϒ

Ψ
{<Ψ'.F

0
, l

1
>}

 O
1
 l

1
 = new O

1
();

 O
2
 l

2
 = new O

2
();

 O
3
 l

3
 = new O

3
();

 l
1
.f = l

2
;

 l
2
.f = l

3
;

 if(C) (Algorithm 1 starts here)
 print l

3
.f;

 l
2
.g = … (Algorithm 2 starts here)

o
3
.ϒ

h
{<“Value”, o

2
>}

o
3
.ϒ

Ψ
{<Ψ.F

0
, l

3
>, <Ψ'.F

0
, l

3
>}

o
2
.μ {f → o

3
}

o
2
.ϒ

h
{<“Value”, o

1
>}

o
2
.ϒ

Ψ
{<Ψ.F

0
, l

2
>}

o'
2
.μ {f → o

3
}

o'
2
.ϒ

h
{<“Value”, o'

1
>}

o'
2
.ϒ

Ψ
{<Ψ'.F

0
, l

2
>}

o
1
.μ {f → o

2
}

o
1
.ϒ

Ψ
{<Ψ.F

0
, l

1
>}

o'
1
.μ {f → o'

2
}

o'
1
.ϒ

Ψ
{<Ψ'.F

0
, l

1
>}

l
1
 → o

1
 : S

Ψ
{Ψ}

l
2
 → o

2
: S

Ψ
{Ψ}

l
3
 → o

3
: S

Ψ
{Ψ,Ψ'}

l
1
 → o'

1
 : S

Ψ
{Ψ'}

l
2
 → o'

2
: S

Ψ
{Ψ'}

l
3
 → o

3
: S

Ψ
{Ψ,Ψ'}

Ψ

(F

0
) Ψ'

(F

0
)

(Final Stacks)

(Recursion reaches : o
1
)

clone (o
1
,Ψ')

o
3
.ϒ

h
{<“Value”, o

2
>, <“Value”, o'

2
>}

o
3
.ϒ

Ψ
{<Ψ.F

0
, l

3
>, <Ψ'.F

0
, l

3
>}

(Returned)

(Shared)

o
1

o
2

o
3

f

f

l
1
 →

l
2
 →

l
3
 →

Ψ'

l
1
 →

l
2
 →

l
3
 →

Ψ

<Ψ.F
0
, l

1
> <Ψ'.F

0
, l

1
>

<Ψ.F
0
, l

2
>

<Ψ'.F
0
, l

2
>

<Ψ.F
0
, l

3
>

<Ψ'.F
0
, l

3
>

Forward Heap Pointer

Forward Stack Pointer

Reverse Heap Pointer

Reverse Stack Pointer

o
1

o
2

o
3

f

f

l
1
 →

l
2
 →

l
3
 →

Ψ'

l
1
 →

l
2
 →

l
3
 →

Ψ

<Ψ.F
0
, l

1
> <Ψ'.F

0
, l

1
>

<Ψ.F
0
, l

2
>

<Ψ'.F
0
, l

2
>

<Ψ.F
0
, l

3
>

<Ψ'.F
0
, l

3
>

o'
1

o'
2

f

f

Before Algorithm 2 After Algorithm 2

Figure 3.7: Stepwise illustration of running Algorithms 2 on a sample code.

68

its N as follows: Fn−2.N ← Fn−2.N ∪ Fn−1.N −NE
NCO(Fn−1).

3.9 Conclusion

In this chapter, we discussed the semantics of translating Jimple expressions to CriticAL

expressions. We also discussed case-by-case rules representing the semantics of executing

each Jimple statement. There were also discussions on how we could curb path explosion

by setting a maximum bound on loop unrolling and had a glimpse at the future work of

integrating a constraint solving module. We discussed in detail algorithms for maximizing

sharing and minimizing cloning through a lazy initialization method. In the next chapter,

we will present some implementation specific discussions on extending CriticAL to support

APIs and libraries.

69

Chapter 4

Extending CriticAL

In Chapter 3, we covered the core design of CriticAL using abstract notation. In this

chapter, we will discuss the implementation details behind extending CriticAL to support

new APIs and libraries with the help of real examples and code snippets. Reconsider

Figure 3.1 in Chapter 3 that explains the plugin mechanism of CriticAL. We will need to

develop a plugin project in Eclipse and register the project to the CriticAL’s core as an

extension plugin. A new API can be supported by CriticAL by extending a set of base

classes that represent symbolic objects. In the next few sections, we will discuss the details

of implementing an extension plugin.

4.1 Overview of the Extension Process

Here we provide an overview of the process for developing an extension plugin for CriticAL:

1. Implement an extension plugin and specify the factory class (that implements the

IFactory interface) for the extension plugin in plugin.xml . The registered factory

class must specify entry methods from which a symbolic execution should start (Sec-

tion 4.2). Entry points must be carefully selected to prevent a relevant API client code

from being sliced away in a symbolic execution. The symbolic execution will start and

end at an entry method and hence will ignore methods that are not reachable from

70

the method.

2. Implement necessary symbolic classes by extending the SymbolicAPI class provided

by CriticAL to abstract the behavior of the corresponding Java API classes. Imple-

ment necessary methods within the extension classes to abstract the behavior of the

corresponding Java API methods. Create a mapping between the symbolic types to

Java types in the plugin factory class. CriticAL binds the Jimple parameters to cor-

responding symbolic object arguments. The extension plugin developer may modify

the state of the receiver and parameters in the extension method. They could also

perform a pre/post condition checking to generate a critique (which implements the

ICritic interface) within this API method in the same way as pre/post-condition-

based checking is done in program verification tools (Section 4.5).

3. If a critique needs to be generated outside the implementation of an API method, then

the ICheckPoint interface can be used. Each ICheckPoint object represents a Point-

of-Interest (POI) where a plugin developer specifies logic for checking the state of

symbolic objects. For instance, we have a rule that checks that all JFrames must even-

tually be visible at the end of the execution path. This rule cannot be implemented

within an API method of the symbolic class for JFrame. Hence, we specify this logic

in the check() method of the PathEnd POI. The implemented POI class then needs

to be registered to the factory extension class. Several points of interest are provided

for checking, e.g., PathStart, PathEnd, MethodStart, MethodEnd, StatementStart,

StatementEnd, and so on. Note that the MethodStart and MethodEnd POIs are points

before a method in the API-client code is expanded and after the statements within

the method are executed, respectively. These POIs are different from API methods

that are directly executed with the user provided semantics and checking logic. For

each POI, the check() method provides all of the information about the program

state, which includes the current statement, current stack frame, current execution

stack, and the heap. Users can formulate any rules to check the pre/post condi-

tion or state invariants as they would do using other program verification techniques

71

(Section 4.4).

4. Finally, documents associated with critiques can be locally stored within the extension

project in the “project/doc” directory or can be remotely stored in a web server and

retrieved using HTTP.

4.2 Creating an Extension Plugin Project

Creating an extension plugin is a trivial task. Eclipse provides a wizard to create an exten-

sion plugin. After creating an empty extension plugin with a singleton option and a plugin

activator, we will add new classes to the project to make it work with the core of CriticAL.

Figure 4.1 shows the typical structure of a plugin extension project, the plugin.xml settings

file, and the IFactory interface found in the edu.clarkson.serl.critic.factory pack-

age of the core (from here onward we will use the short form serl for edu.clarkson.serl).

We have divided our extension plugin into three packages. In the subsequent sections, we

will discuss the details of each package. Note that the full source code (LGPL) of the core

and the swing extension can be downloaded from https://sf.net/p/critical/code.

4.3 The serl.critic.swing Package

There are two classes in this package. However, the SwingCriticPlugin is not very inter-

esting; it just serves as a plugin activator and contains the auto-generated code from the

plugin creation wizard. The SwingFactory class, however, is the interesting one, which

interacts with the core to provide support for the Swing API. SwingFactory implements

IFactory (Figure 4.1). This class is responsible to map the name of a class in String to

the reflection Class API, which will be used by the core to call methods through Java’s

reflection support. Here is a high-level description of the methods:

• The getSupportedTypes() method returns a set of class names that are supported

by the extension plugin, e.g., {"javax.swing.JButton", "javax.swing.JPanel"}.

72

https://sf.net/p/critical/code

Listing 4.1: Code for choosing entry points in the extension plugin.� �
1 public class SwingFactory implements IFactory {
2 Set<SootMethod> entryMethods;
3

4 public Set<SootMethod> getEntryMethods() {
5 return this.entryMethods;
6 }
7

8 public void checkEntry(SootMethod method) {
9 if(EntryFinder.isIntializedTypeOrSuperType(JFrameAbstraction.TYPE, method))

10 this.entryMethods.add(method);
11 }
12 //... elided
13 }
14

15 // EntryFinder is defined in the edu.clarkson.serl.critic.util package.
16 public class EntryFinder {
17 public static boolean isIntializedTypeOrSuperType(String qName, SootMethod m) {
18 RefType parentType = Scene.v().getRefType(qName);
19 SootClass parentClass = parentType.getSootClass();
20

21 JimpleBody jimpleBody = (JimpleBody)m.retrieveActiveBody();
22 for(Unit u : jimpleBody.getUnits()) {
23 if(u instanceof AssignStmt) {
24 Value rightOp = ((AssignStmt)u).getRightOp();
25 if(rightOp instanceof NewExpr) {
26 NewExpr newExpr = (NewExpr)rightOp;
27 RefType initializedType = newExpr.getBaseType();
28 SootClass initializedClass = ((RefType)initializedType).getSootClass();
29

30 if(initializedClass.equals(parentClass))
31 return true;
32

33 while(initializedClass.hasSuperclass()) {
34 initializedClass = initializedClass.getSuperclass();
35 if(initializedClass.equals(parentClass))
36 return true;
37 }
38 }
39 }
40 }
41 return false;
42 }
43 // ... elided
44 } 	� �

73

<?xml version="1.0" encoding="UTF-8"?>
<?eclipse version="3.4"?>
<plugin>
 <extension
 id="javax.swing"
 name="Swing Support Plugin"
 point="edu.clarkson.serl.critical.factory">
 <factory
 class="...larkson.serl.critic.swing.SwingFactory">
 </factory>
 </extension>
</plugin>

public interface IFactory {
 public Set<String> getSupportedTypes();

 public ISymbol<? extends Value> newSymbol(String type,
 Value value, boolean open, boolean mutable);

 public Class<?> getClassFor(String type);

 public Set<ICheckPoint> getCheckPoints();

 public Set<SootMethod> getEntryMethods();

 public void checkEntry(SootMethod method);
}

(Typical Project Structure)

(plugin.xml)

(SwingFactory implements IFactory)

Figure 4.1: A typical structure of an extension plugin project, an XML settings file, and
the IFactory interface.

• The newSymbol() method should create a new symbolic object given the fully qualified

name of the Java type.

• The getClassFor() method maps a type name in String to the corresponding Class

declared in the extension (see Section 4.5).

• The getCheckPoints() method returns the classes that represent the Points-of-

Interest (POI) (see Section 4.4) where we will check the properties of the symbolic

object to generate critiques.

• The getEntryMethods() method returns a set of methods from the application class

(users’ code) that serves as a starting point for symbolic execution.

• The checkEntry() method will essentially inform the extension plugin that the sup-

plied method is a part of the client code. The extension plugin can evaluate its Jimple

structure to determine if it wants to mark the method as an entry method to be later

74

void entry() {
 S1;
 S2: m();
 S3;
}

void m() {
 S4;
 S5: if(C)
 S6;
 S7;
}

(Sample Code)

CriticStart

PathStart

PathEnd

MethodStart

StmtStart StmtEndS1

StmtStart S2

MethodStart

StmtStart StmtEndS4

StmtStart

BeforeStackCloned

S5

AfterStackCloned

S5 StmtEnd

StmtStart StmtEndS6

StmtStart StmtEndS7

MethodEnd

StmtEndS2

StmtStart StmtEndS3

MethodEnd

BacktrackPointStart

S5 StmtEnd

StmtStart StmtEndS7

PathEnd

MethodEnd

StmtEndS2

StmtStart StmtEndS3

MethodEnd

CriticEnd

[start of entry()]

[start of m()]

[stack cloning]

[end of m()]

[end of entry()]

[end of first path]

[start of another branch (path)]

[end of m()]

[end of entry()]

[end of second path]

(Order of Calling POIs)

Figure 4.2: The order in which CriticAL executes the check() method of each POI.

returned by getEntryMethods(). For Swing, the creation of a GUI starts by initializ-

ing a top-level widget such as JFrame, which is followed by adding other widgets to the

frame as well as event listeners. Hence, it makes sense to mark an API client method

that intializes a JFrame as an entry method. An example is shown in Listing 4.1. The

checkEntry() method calls a utility method that iterates through all of the Jimple

statements in the supplied API client method looking for an assignment statement

whose right hand side expression is a new expression, which intializes a JFrame or its

subclass.

4.4 The serl.critic.poi Package

The serl.critic.poi package declares classes that represent POIs, the execution points

where we would like to check the properties of symbolic objects. A POI class implements

the ICheckPoint interface defined in the serl.critic.extension package of the core.

75

Listing 4.2: The ICheckPoint Interface.� �
1 public interface ICheckPoint {
2 public enum Interest {
3 CriticStart, CriticEnd, PathStart, PathEnd, MethodStart, MethodEnd,
4 StatementStart, StatementEnd,
5 BeforeStackCloned, AfterStackCloned, BackTrackPointStart
6 }
7 public Interest getInterest();
8 public IResult check(Stmt programCounter, IStackFrame frame, IStack stack,
9 Set<ISymbol<? extends Value>> heap);

10 }
11

12 public class CheckMethodEnd implements ICheckPoint {
13 public Interest getInterest() {
14 return ICheckPoint.Interest.MethodEnd;
15 }
16 public IResult check(Stmt programCounter, IStackFrame frame, IStack stack,
17 Set<ISymbol<? extends Value>> heap) {
18 Set<ISymbol<? extends Value>> set = frame.getNonEscapingNewObjects();
19 Result result = new Result(Interpreter.VOID);
20 for(ISymbol<? extends Value> s : set) {
21 if(s instanceof ICheckable) {
22 IResult tempResult = ((ICheckable<?>)s).checkAtEnd();
23 result.add(tempResult);
24 }
25 }
26 return result;
27 }
28 } 	� �

Listing 4.2 shows the ICheckPoint interface. The POIs (ICheckPoint.Interest) are self-

explanatory and their order of execution is shown in Figure 4.2. We have used two POIs

for Swing extension: MethodEnd and PathEnd, that are initialized in SwingFactory and re-

turned by the getCheckPoints() method (see project structure in Figure 4.1. The check()

method in a POI object provides all of the information needed to check the properties of a

symbolic object with the state of the program at that point (program counter, most recent

stack frame, stack, and heap represented as a set of symbolic objects). Note that all of the

symbolic objects used in CriticAL are subtypes of the ISymbol interface, which is further

discussed in Section 4.5.

Consider the CheckMethodEnd class, an implementation of ICheckPoint, in Listing 4.2.

76

We want to check properties of certain symbolic objects at the end of an API-client method,

which is why we have this POI implemented. In particular, we want to check the properties

of newly created objects that do not escape the method boundary. We get a set of such

objects in line 18, the details of which have been covered in Rule 3.23 (Section 3.8). Using

this set, we can enforce a rule such as: a JFrame must eventually be visible once it is

initialized. Rather than cluttering the check() method with many such rules, we devised

an interface called ICheckable that objects like JFrame could implement and specify such

logic in the checkAtEnd() method of the interface in an elegant way. Also notice that

the result of checking is encapsulated within an IResult object. This object encapsulates

the result of executing an API-support method and all of the critiques associated with

the method. Listing 4.3 shows both IResult and ICritic interfaces. Note that besides

the specified POIs in the ICheckPoint interface, we could also check pre-conditions, post-

conditions, and state invariants within the supported API-method, which is discussed in

Section 4.5.

4.5 The serl.critic.types Package

In the serl.critic.types package, we declare all of the Swing classes that we would like

to support. Figure 4.1 shows some of the classes that we have supported in our extension

plugin. To support an API class, the extension plugin has to inherit the SymbolicAPI class

defined in the core of CriticAL. Figure 4.3 shows the partial type hierarchy of the core, the

swing extension plugin, and the Java Swing API. Let us discuss some of the implementation

details of the JFrame shown in Listing 4.4.

We need to implement the ISymbol interface provided by CriticAL to support an API

class such as JFrame. To make the implementation easy, CriticAL provides a subtype, the

SymbolicAPI abstract class, that comes preloaded with all of the functionalities provided

to a symbolic object. After creating an API class (JFrameAbstraction), the factory class

of the extension plugin (SwingFactory) needs to map the qualified name of the real class to

the symbolic version, i.e. "java.swing.JFrame" 7→ JFrameAbstraction.class, for the im-

77

Listing 4.3: IResult and ICritic Interfaces.� �
1 public interface IResult {
2 public ISymbol<? extends Value> getValue(); // Result of execution
3 public SortedSet<ICritic> getCritics();
4 public boolean add(ICritic critic);
5 public boolean remove(ICritic critic); ...
6 }
7

8 public interface ICritic extends Comparable<ICritic> {
9 public static final String LINE NUMBER = IMarker.LINE NUMBER;

10 public static final String URL = ”url”; ...
11

12 // Three kinds of critiques
13 public static enum Type { Recommendation, Explanation, Criticism}
14 public static enum Priority {Low, Medium,High}
15

16 public String getId();
17 public String getOutermostClass();
18 public int getLineNumber();
19 public Type getType();
20 public Priority getPriority();
21 public String getTitle();
22 public String getDescription();
23 public Object getAttribute(String key);
24 public Object setAttribute(String key, Object value);
25 public Map<String, Object> getAttributeMap();
26 } 	� �

plementation in Listing 4.4. We implement this mapping in SwingFactory.getClassFor()

as shown in Listing 4.5. After this association has been established, CriticAL can then

delegate all of the operations on a real Java object to the associated symbolic object, thus,

symbolically executing the API client code.

Listing 4.6 shows all of the fields (properties) for JFrame and JComponent that we have

modeled in the current implementation of the Swing plugin. An API method will update

these properties as its execution semantics. We saw an example in Listing 4.4 where the

setDefaultCloseOperation() API method mapped the field, DCO to the supplied symbolic

value in the parameter. The state of a symbolic object is represented by the association

of these symbolic properties to symbolic objects at a given control point. Note that all of

the GUI widgets in Swing inherit from the JComponent class, hence, our abstraction classes

78

Listing 4.4: Implementation of the symbolic JFrame class.� �
1 public class JFrameAbstraction extends SymbolicApi<Value>
2 implements ICheckable<Value> {
3 public static final SymbolicKey DCO = SymbolicKey.fromObject(”dco”);
4

5 public IResult execute(InvokeExpr invkExpr, List<ISymbol<? extends Value>> args) {
6 String method = invkExpr.getMethod().getName();
7 if(method.equals(”<init>”)) // Implementation of JFrame’s constructor
8 return this.init(args);
9 if(method.equals(”setDefaultCloseOperation”))

10 return this.setDefaultCloseOperation(arguments);
11 ...
12 }
13

14 public IResult init(List<ISymbol<? extends Value>> arguments) {
15 this.put(DCO, ConstInteger.fromInteger(JFrame.HIDE ON CLOSE)); ...
16 return new Result(Interpreter.VOID);
17 }
18

19 public IResult setDefaultCloseOperation(List<ISymbol<? extends Value>> arguments) {
20 ISymbol<? extends Value> op = arguments.get(0);
21 this.put(DCO, op);
22 return new Result(Interpreter.VOID);
23 }
24

25 public IResult checkAtEnd() {
26 Result result = new Result(Interpreter.VOID);
27 ...
28 ISymbol<? extends Value> closeOp = this.get(DCO);
29 int value = (Integer)closeOp.getValue();
30 ICritic critic = new Critic(
31 ...
32 ICritic.Type.Recommendation,
33 ICritic.Priority.High,
34 ”You are using the ” + toCloseOperationString(value) + ” property for the default ...” +
35 ”There are multiple options available for closing a frame. Please click to see the details.”
36);
37 critic.setAttribute(ICritic.URL, ”http://docs.oracle.com/...”); // Location of document
38 result.add(critic);
39 return result;
40 }
41

42 public static String toCloseOperationString(int value) {
43 if(value == JFrame.HIDE ON CLOSE)
44 return ”HIDE ON CLOSE”;
45 if(value == JFrame.EXIT ON CLOSE)
46 return ”EXIT ON CLOSE”;
47 ...
48 }
49 ...
50 } 	� �

79

(CriticAL's Core)

(CriticAL's Swing Extension)
(The Java Swing API)

Figure 4.3: The type hierarchy of the core, the Swing extension plugin, and the Swing API.

Listing 4.5: Implementation of SwingFactory.� �
1 public class SwingFactory implements IFactory {
2 public Class<?> getClassFor(String type) { ...
3 if(type.equals(”java.swing.JButton”))
4 return JButtonAbstraction.class;
5 if(type.equals(”javax.swing.JFrame”))
6 return JFrameAbstraction.class; ...
7 } ...
8 } 	� �

for the GUI widgets also inherit from the JComponentAbstraction class and reuse these

fields in defining the abstractions for their API methods. However, these fields only model

a subset of the properties of JFrame and JComponent that is good enough for us to check

the GUI composition and layout logic.

To illustrate the symbolic execution process, reconsider Figure 1.5 (Section 1.1.2). The

statement in line 15 (Figure 1.5.(a)), first calls SwingFactory.newSymbol("java.swing.JFr-

ame", ...), which creates a new JFrameAbstraction object and returns to the core. The

core maps the local variable frame in line 15 to the newly created symbolic JFrame in

the stack. After this operation, the core encounters a call to the method representing the

80

Listing 4.6: Fields that model the state of JFrame and JComponent.� �
1 public class JFrameAbstraction extends SymbolicApi<Value> implements ICheckable {
2 public static final SymbolicKey TITLE = SymbolicKey.fromObject(”title”);
3 public static final SymbolicKey CONTENT PANE = SymbolicKey.fromObject(”cPane”);
4 public static final SymbolicKey DCO = SymbolicKey.fromObject(”DCO”);
5 public static final SymbolicKey LAID OUT = SymbolicKey.fromObject(”laidout”);
6 public static final SymbolicKey VISIBLE = SymbolicKey.fromObject(”visible”);
7 public static final SymbolicKey MENU BAR = SymbolicKey.fromObject(”menu”);
8 ...
9 }

10

11 public class JComponentAbstraction extends SymbolicApi<Value> implements ... {
12 public static final SymbolicKey LOCATION = SymbolicKey.fromObject(”location”);
13 public static final SymbolicKey SIZE = SymbolicKey.fromObject(”size”);
14 public static final SymbolicKey PREFERRED SIZE = SymbolicKey.fromObject(”pSize”);
15 public static final SymbolicKey MIN SIZE = SymbolicKey.fromObject(”minSize”);
16 public static final SymbolicKey MAX SIZE = SymbolicKey.fromObject(”maxSize”);
17

18 public static final SymbolicKey LAYOUT = SymbolicKey.fromObject(”layout”);
19 public static final SymbolicKey COMPONENTS = SymbolicKey.fromObject(”comps”);
20 public static final SymbolicKey VALID = SymbolicKey.fromObject(”valid”);
21 public static final SymbolicKey PARENT = SymbolicKey.fromObject(”parent”);
22 ...
23 } 	� �

constructor of the frame, which is delegated to the JFrameAbstraction.init() method

(lines 14-17) through the JFrameAbstraction.execute() method (lines 5-12) in Listing 4.4.

All of the API class needs to implement the IResult execute(InvokeExpr invkExpr,

List<ISymbol<? extends Value>> args) method to receive a method call on the sym-

bolic counterpart. Also notice how the execute() method of JFrameAbstraction switches

between different API method calls based on the name. Hence, the support for method

overloading must be implemented explicitly by the supported API class in the execute

method.

In our implementation, we are supporting the recommendation for the default closing

behavior of JFrame. In the constructor (lines 14-16), we specify that the default closing

behavior for a newly created JFrame is HIDE ON CLOSE. Notice that we are implementing

the ICheckable interface to specify the checking logic at the MethodEnd POI (Section 4.4).

Hence, when the symbolic execution reaches the end of a method that creates this sym-

81

bolic JFrame object, checkAtEnd() (lines 25-40) gets called. This method generates the

recommendation shown in Figure 1.5(b). In summary, to generate a critique (explanation,

recommendation, or criticism), we implement rules that check the state (property-value

map) of a symbolic object at various points of interest. The final result is encapsulated

in an IResult object and returned to the core. The core then automatically creates the

necessary markers to display the critiques to the user in the Eclipse IDE.

4.6 Supporting Listeners

(a) A program with a registered action listener

(b)
Pressing button

apparently shows no
effect for the code in (a)

(c)
The desired behavior

on pressing the button.

Figure 4.4: Code showing the use of an action listener in a JButton.

We have briefly discussed the support for listeners in Section 3.1 previously. Let us

discuss in more details about listeners here. Listeners are treated as any other methods

and in-lined at the end of each execution path if they are registered in the GUI objects

in the path. Hence, a GUI object that accepts a listener needs to inform CriticAL that it

has accepted the listener in the current path. This information is passed to the execution

stack through the ICallbackPoint object, which will be discussed shortly. But for now,

82

let us look at the example shown in Figure 4.4. The code in the example creates a window

shown in Figure 4.4(b). An action listener is registered to the JButton, in lines 17-22

(Figure 4.4(a)). The desired behavior of the button is shown in Figure 4.4(c) where the

action listener adds the new label "Hi!" to the panel. However, when the user clicks the

button, he does not get this behavior. Also note that CriticAL produces a criticism in

line 13 of the code that informs the user about this problem with the panel, which is: When

the content of a container is changed, it must be revalidated and repainted for the change

to take effect. (see Section 2.3.4 for details about this rule). The problem can be fixed by

adding panel.revalidate(); panel.repaint() just after line 20 in Figure 4.4(a). Let us

now discuss how CriticAL produces this criticism.

Listing 4.7 shows the ICallbackPoint interface (lines 1-10) that is used to repre-

sent a listener object. For the type of the listener object in Figure 4.4 we would use

"java.awt.event.ActionListener". Whenever the addActionListener() method is called

on a JButton, lines 19-27 of Listing 4.7 gets executed. There is only one method in the action

listener, i.e., actionPerformed() that needs to be supported. Lines 21-27 dynamically pre-

pares arguments for this method to be used by the core for binding parameters to arguments.

Notice how ActionEvent (Figure 4.4(a), line 18) is mapped to ActionEventAbstraction

in Listing 4.7 (lines 23-25). After we have configured a listener, the code inside the listener

methods get executed in the same way as a regular method is executed. Now, we just need

to implement the necessary rule to detect the problem with changed containers as if it would

occur in a regular method. This rule is specified in the JComponentAbstraction class, a

super class of JButtonAbstraction as shown in Listing 4.8.

In summary, when the panel.add(label) get called in line 20 of Figure 4.4(a), the

JComponentAbstraction.add() method in lines 5-9 of Listing 4.8 gets called. When the

control reaches the end of the path, it evaluates the set of non-escaping newly created

objects for the entry method and finds the panel object in the set. Hence, it executes

the checkAtEnd() method (lines 11-32 of Listing 4.8) to report the criticism at line 13 of

Figure 4.4(a). In this way, using the call back mechanism, we can easily provide support

83

Listing 4.7: The ICallbackPoint Interface and the symbolic JButton class.� �
1 public interface ICallbackPoint {
2 // The listener object
3 public ISymbol<? extends Value> getCallbackSymbol();
4 // The source object
5 public ISymbol<? extends Value> getSource();
6 // The fully qualified type of the listener
7 public String getCallbackType();
8 // To dynamically configure arguments for each listener method declared in the listener’s type
9 public List<ISymbol<? extends Value>> getArguments(SootMethod method);

10 }
11

12 public class JButtonAbstraction extends JComponentAbstraction {
13 public IResult execute(InvokeExpr invkExpr, List<ISymbol<? extends Value>> args) {
14 String method = invkExpr.getMethod().getName();
15 if(method.equals(”addActionListener”)) {
16 return this.addActionListener(args);
17 }
18 // Do whatever JComponentAbstraction does with other methods
19 return super.execute(invokeExpr, args);
20 }
21

22 public IResult addActionListener(List<ISymbol<? extends Value>> args) {
23 // Create an ICallbackPoint object and dynamically configure the ActionEvent parameter
24 // for the ”void actionPerformed(ActionEvent)” listener method
25 ICallbackPoint callBack = new CallbackPoint(..., ”java.awt.event.ActionListener”) {
26 public List<ISymbol<? extends Value>> getArguments(SootMethod method) {
27 ArrayList<ISymbol<? extends Value>> arguments = new ArrayList ...;
28 ActionEventAbstraction event = new ActionEventAbstraction();
29 event.put(ActionEventAbstraction.SOURCE, JButtonAbstraction.this);
30 arguments.add(event);
31 return arguments;
32 }
33 };
34

35 IStack stack = Interpreter.instance().peekStack();
36 stack.addCallback(callBack); // Register the callback object to the execution stack
37 return new Result(Interpreter.VOID);
38 }
39 ...
40 } 	� �

84

for listeners.

4.7 Action-Based Critiquing

We saw two instances of state-based critiquing (Listings 4.4 and 4.8) where the state of a

symbolic object was used to critique an API-client code at the MethodEnd POI. Sometimes,

actions are also necessary. For instance, the recommendation generated for the confusing

APIs (setAlignmentX(), setHorizontalAlignment(), and setHorizontalTextPosition(),

also discussed in Sections 1.1.1 and 2.5.2) use action rather than state. Listing 4.9 shows

an implementation where the call to one of the confusing API methods generates recom-

mendation for the use of other confusing API methods in the group and an explanation of

the proper usage scenario for each method.

4.8 Supporting Static API Methods

Supporting a static method is pretty trivial. All one has to do is to map the name of the real

Java class declaring the static method to the symbolic counter part in the extension factory

and implement the static method with the same name. CriticAL will automatically delegate

the call to the static API method to the corresponding static method in the symbolic API

class. For instance, the javax.swing.Box class declares a bunch of static methods for creat-

ing different kinds of Boxes such as "static Component Box.createGlue()". Listing 4.10

shows an example of the corresponding static method in the BoxAbstraction class.

4.9 A Generalizability Argument

CriticAL works on top of Jimple IR and should be able to support APIs and libraries

in any programming languages that could be transformed to Jimple IR. In this chapter,

we explored the extension process of CriticAL to support the Swing API. We followed a

general process described in Section 4.1 to support the Swing API. The same process could

be applied to support other APIs as well, which serves as a general template for extending

85

CriticAL. In this section, we sketch the extension process for a different API (the java.io

API) as an example.

Suppose we want to support two rules for the subclasses of InputStream and OutputStream:

1. A closed IO stream cannot be read or written again.

2. An opened IO stream must eventually be closed in the program.

Let us outline the process of extending CriticAL to support these rules using the general

template discussed in Section 4.1:

1. Create an extension project for the IO API. Create a factory class by implement-

ing the IFactory interface to associate the Java classes with the CriticAL counter-

parts that need to be supported. These classes would be BufferedInputStream,

FilterInputStream, BufferedOutputStream, FilterOutputStream, and so on. De-

fine entry points in the checkEntry() method of the factory class from which a

symbolic execution should start. For the Swing extension we chose the API-client

methods that initialized a top-level GUI (JFrame). For the IO API, a good heuristic

would be the API-client methods that initialize one of the subclasses of InputStream

and OutputStream. Note that using such a heuristic has a chance that a relevant

API-client method is sliced away because it is unreachable in the call graph of the

entry method, thus, making analysis unsound. The worst-case scenario of choosing

an entry method would be the main method that would make the analysis sound but

may produce many unnecessary execution paths. Hence, choosing an entry method is

a compromise between performance and precision for an extension plugin developer.

2. Create necessary abstraction classes for the API classes in the IO API. At the top-level

of the abstraction class hierarchy would be InputStreamAbstraction and OutputStr-

eamAbstraction that would extend from the SymbolicAPI class present in the core of

CriticAL. These classes would be inherited by subclasses such as FilterInputStream-

Abstraction, BufferedOutputStreamAbstraction, and FilterOutputStreamAbst-

raction. The constructor of the InputStreamAbstraction and OutputStreamAbstr-

86

action will associate a symbolic property CLOSED with false. The close() methods

of these classes will associate CLOSED with true. Any methods that abstract read and

write operations in the abstraction classes will check if CLOSED is associated to false.

If not so, then a criticism would be produced as a semantics of executing those API

methods. In this way, the first rule could be supported.

3. To support the second rule, we need to implement a POI. We will implement the

MethodEnd POI as discussed in Section 4.4 (Listing 4.2). We will then implement the

checkAtEnd() method in InputStreamAbstraction and OutputStreamAbstraction

that would check if CLOSED is associated to true (see Listing 4.4 for an example). If

not so, we will generate a criticism saying the IO stream is not closed in the program.

Note that CriticAL has more features then the IO API would need, for example, the

support for a callback method (an event listener method) that we did not use in this exam-

ple. In summary, we see a broader prospect for CriticAL in the API-based programming

because it appears to us that CriticAL can support more than just Swing and the Java

IO APIs. Having implemented the support for one complex API (Swing) and sketched out

the implementation for another API (java.io), we feel confident about the generalizability

of CriticAL. Nevertheless, we need to test more APIs and libraries as a future work to

convincingly make such a claim.

87

Listing 4.8: The JComponentAbstraction Class.� �
1 public class JComponentAbstraction extends SymbolicApi<Value>
2 implements ICheckable<Value> {
3 public static final SymbolicKey VALID = SymbolicKey.fromObject(”valid”);
4 public static final SymbolicKey VISIBLE = SymbolicKey.fromObject(”visible”);
5

6 public IResult add(List<ISymbol<? extends Value>> arguments) {
7 // Whenever a component is added, the container is in invalid state
8 this.put(VALID, Interpreter.FALSE);
9 ...

10 }
11

12 public IResult setVisible(List<ISymbol<? extends Value>> arguments) {
13 ISymbol<? extends Value> visibility = arguments.get(0);
14 this.put(VISIBLE, visibility);
15 for(ISymbol<? extends Value> child : this.getAllChildren()) {
16 child.put(VISIBLE, visibility);
17 }
18 ...
19 }
20

21 public IResult checkAtEnd() {
22 ...
23 // If a local component is visible but invalid
24 ISymbol<? extends Value> visible = this.get(VISIBLE);
25 if(visible != null && visible.equals(Interpreter.TRUE)) {
26 ISymbol<? extends Value> validity = this.get(JComponentAbstraction.VALID);
27 if(validity == null || validity.equals(Interpreter.FALSE)) {
28 ICritic critic = new Critic(
29 ...
30 ICritic.Type.Criticism,
31 ICritic.Priority.High,
32 ”You have created a GUI widget ... that has been changed after it ” +
33 ”has been made visible. The effect of such change is not visible until ” +
34 ”widget.revalidate() followed by widget.repaint() is called or the ” +
35 ”pack() method of the JFrame/JDialog that contains it is called. ”
36);
37 critic.setAttribute(ICritic.URL, ”http://docs.oracle.com/.../tutorial/.../problems.html”);
38 result.add(critic);
39 }
40 }
41 return result;
42 }
43 ...
44 } 	� �

88

Listing 4.9: Action-based recommendation for confusing APIs.� �
1 public class JComponentAbstraction extends SymbolicApi<Value> implements ... {
2 public IResult execute(InvokeExpr invkExpr, List<ISymbol<? extends Value>> args) {
3 String m = invkExpr.getMethod().getName();
4 if(...) ...
5 else if(m.equals(”setAlignmentX”) || m.equals(”setAlignmentY”) ||
6 m.equals(”setHorizontalAlignment”) || m.equals(”setVerticalAlignment”) ||
7 m.equals(”setHorizontalTextPosition”) || m.equals(”setVerticalTextPoisition”)) {
8 if(this instanceof JButtonAbstraction || this instanceof JLabelAbstraction ||
9 this instanceof JRadioButtonAbstraction || this instanceof JComboBoxAbstraction) {

10 ICritic critic = new Critic(
11 ...
12 ICritic.Type.Recommendation,
13 ICritic.Priority.Medium,
14 ”You are using an API that controls alignment for a GUI widget. ” +
15 ”setAlignmentX() and setAlignmentY() is designed to be used with BoxLayout ...”
16);
17 // This time we are using a local document within the plugin project in ”./doc” folder
18 String url = CriticPlugin.getDocumentURL(PLUGIN ID, ”RE−Alignment.html”);
19 critic.setAttribute(ICritic.URL, url);
20 IResult result = new Result(Interpreter.VOID);
21 result.add(critic);
22 return result;
23 }
24 } ...
25 } ...
26 } 	� �

Listing 4.10: Support for a static method in the symbolic Box class.� �
1 public class BoxAbstraction extends JComponentAbstraction {
2 public static IResult createGlue(List<ISymbol<? extends Value>> arguments) {
3 BoxAbstraction box = new BoxAbstraction();
4 // The arguments has no effect so lets reuse it
5 box.init(arguments);
6 return new Result(box);
7 }
8 public IResult init(List<ISymbol<? extends Value>> arguments) {
9 IResult result = super.init(arguments);

10 BoxLayoutAbstraction layout = new BoxLayoutAbstraction();
11 layout.setDefault(true);
12 this.put(LAYOUT, layout);
13 return result;
14 }
15 ...
16 } 	� �

89

Chapter 5

Evaluation

CriticAL has been iteratively developed by adding new rules to its Swing extension plugin,

fixing major design issues in supporting those rules, and testing against the unit test cases

developed for each rule and against the real user programs over a period of a year. In this

chapter, we will present two kinds of evaluations of CriticAL on real programs written by

novice Swing users:

1. Formative study conducted on undergraduate students from Clarkson University.

2. Evaluation of programs on the Java Swing forum and official Swing tutorials.

5.1 Formative Study

When we developed the first prototype of CriticAL in Fall 2011, we only had a few rules

implemented based on our experience with the Java Swing API. We did not have the case

study of Chapter 2 conducted then. Hence, to get an initial assessment of its utility on the

field and to identify room for improvement, we conducted a formative (or observational)

user study [28] with a dozen undergraduate students in the Software Design for Visual

Environments (EE408, Fall 2011) course offered by Dr. Daqing Hou at Clarkson University.

The study was conducted on Wednesday, October 19, 2011 and its main goal was to get

a sense of the utility of the tool on real novice programmers and observe whether the tool

90

Figure 5.1: Design of a tax form.

could help with learning to use the Swing API. In this section, we report on the details of

the study and our observations.

5.1.1 Methodology

We wanted to give a realistic problem to students in the study that involved components

for which CriticAL had implemented some support. We asked them to design a tax form

in the classroom similar to the one shown in Figure 5.1. The assignment required them to

compose multiple GUI widgets using a combination of layout managers. They were allowed

to use the Internet for help as well as CriticAL. All of their machines were equipped with

Eclipse IDE with an installation of CriticAL. They were taught how to use CriticAL and

view the critiques shown by the tool. They were given 45 minutes to solve the problem

and were encouraged to use CriticAL whenever they encounter a problem. We asked them

to inform us of any interesting observation (good or bad) about using CriticAL during the

course of their programming by raising their hand. We took a note of their observations.

We also observed the students ourselves when they were coding the solution by periodically

walking around the room 1. At the end of the class, we conducted a short one minute

interview with each student and asked them about their experience with CriticAL. Note

1We did not use any audio or visual medium to record this experiment.

91

that we did not use any questionnaires in this study because we only wanted to observe

the use of CriticAL as a formative (not summative) study and test whether there is some

utility of the tool at its early prototype phase. We have collected a two A4 sheet size of

notes from the study which contains a short description of problems that the students faced

and their suggestions for the improvement of CriticAL.

5.1.2 Subjects

There were 12 senior undergraduate students who participated in this study from different

majors: computer science, software engineering, and electrical engineering. Students were

only taught the basic design principle of Swing and about some of the GUI widgets that they

could use in the study. They also had one lecture worth of ideas about layout managers

but did not have programming experience with combining multiple layout managers. In

summary, they could be classified as novice users of the Java Swing API. Furthermore, they

also knew that CriticAL was the tool developed by us and they were being asked to use it

for a programming task.

5.1.3 Observation and Results

Almost all of the students referred to the online Swing tutorial for help with using layout

managers in the beginning of the experiment. As they started writing code, they got stuck

a couple of times and then they started using CriticAL. Once they found that CriticAL

could provide them with useful suggestions, they used CriticAL more frequently. Here are

some problems that CriticAL helped solve in the study:

Parent Switching (3 students)

We have previously discussed the parent switching behavior in Section 2.3.3. Surprisingly, all

three students stumbled upon this problem for the content pane of the JFrame. The content

pane of the JFrame, by default, is managed by BorderLayout and calling contentPane.a-

dd(widget) assigns the widget to the CENTER location of the layout. All of the three students

92

wanted to add multiple widgets to the content pane and called contentPane.add(widget);

more than once, thus, overwriting the CENTER location more than once. As a result, only the

last widget was visible and they were surprised at this behavior of the content pane. They

did not understand that it was the layout manager that was responsible for this behavior.

They liked it when CriticAL pointed out this problem to them.

Issues with JFrame (2 students)

One of the student forgot to call JFrame.setVisible(true) after laying out the content

pane in his JFrame and wondered why his program immediately terminated after running

without showing the window. CriticAL suggested that the JFrame was not set visible in his

program after which the student fixed his code accordingly.

Another student noticed that even after closing his JFrame with the window manipu-

lation button, the JFrame did not dispose properly. Even though it was invisible on the

desktop, it was still running on the background as seen on the task bar. CriticAL’s recom-

mendation on considering multiple available options for the close operation helped clarify

his situation. He added JFrame.setDefaultCloseOperation(JFrame.EXIT ON CLOSE) to

fix his problem.

Content Mismatch (1 student)

We have previously discussed the issue with content mismatch in Section 2.3.5. One of the

students came up with a code snippet similar to Listing 5.1. The addLayoutComponent()

method only added the three panels to the layout manager but not to mainPanel. Hence,

the content of mainPanel and its layout manager layout was different. As a result, neither

of the three panels were visible and the students was wondering what went wrong. CriticAL

pointed out this issue to the student and presented a document that described the process

of adding new widgets to a container.

93

Listing 5.1: Content mismatch between a JPanel and its layout manager.� �
1 JPanel mainPanel = new JPanel();
2 BorderLayout layout = new BorderLayout();
3 mainPanel.setLayout(layout);
4

5 JPanel ssnPanel = new JPanel();
6 JPanel namePanel = new JPanel();
7 JPanel buttonPanel = new JPanel();
8

9 // Only adds to the layout but not to mainPanel
10 layout.addLayoutComponent(ssnPanel, BorderLayout.NORTH);
11 layout.addLayoutComponent(namePanel, BorderLayout.CENTER);
12 layout.addLayoutComponent(buttonPanel, BorderLayout.SOUTH);
13 ... 	� �

Table Design (1 student)

We have previously discussed the issue with table design in Section 2.3.6. One of the students

tried to achieve the table-like design (Figure 5.1) by arranging the three JLabels for first,

middle, and last names and the corresponding JTextFields using two different JPanels.

In the first JPanel, he set the layout manager to BoxLayout with horizontal alignment

and added the three JLabels. In the second JPanel, he used another BoxLayout with

horizontal alignment and then added the three JTextFields. Both of the JPanels were

then added to another JPanel managed by another BoxLayout with vertical alignment.

Nevertheless, the labels and text fields did not align properly to give a table-like view of

Figure 5.1. CriticAL explained this problem to the student and suggested to choose from

one of the following layout managers: GridLayout, GridbagLayout, and SpringLayout.

Note that even though only one student was helped by this rule in the classroom during

the study, several students reported to us that CriticAL helped them with the table-design

while working on the problem as a homework.

5.1.4 Lessons Learned

Table 5.1 summarizes the result of our formative study. Even at its early stage of develop-

ment, CriticAL helped 7 out of 12 students with the programming process. Nevertheless,

94

Table 5.1: Summary of the formative user study conducted on Clarkson’s students.

Problems Helped by CriticAL Students #

Parent Switching 3 (25%)

Issues with JFrame 2 (16.66%)

Content Mismatch 1 (8.33%)

Table Design 1 (8.33%)

Total Helped 7 (58.33%)

Total Students 12

due to some internal bugs, CriticAL crashed on 3 instances, which has been fixed now. Out

of the 12 students, 4 of them were able to complete the task within the allocated time and

the rest submitted the solution as a homework. We should not claim that the students

who completed the task on time did so only because of CriticAL, however, our observation

shows that CriticAL certainly provided them with some assistance. Furthermore, back-

ground knowledge and the ability to learn fast may also have played role in the success of

the four students. In the informal one minute interviews at the end of the study, students

suggested a few improvements for CriticAL such as implementing markers rather than just

a list view for critiques, some refinement on the available documents by making them more

elaborate, and support for more widgets than was available then. We have used those

suggestions to improve CriticAL. In general, all of the students showed a positive response

about their overall experience with CriticAL. Nevertheless, we should also note that the

students had a prior knowledge that the tool was developed by us and may have given a

biased opinion about their experience.

The study shows that novice programmers encounter problems when assigned with a

new task. Having the Internet and Swing tutorials may not be sufficient for them to

achieve a complex task in a limited time. CriticAL was helpful in spotting important

problems at several instances and provided that extra help they needed, which otherwise

would require an expert eye. To summarize, CriticAL does have some utility in the API-

based programming practice. Note that even though this formative study was encouraging,

we feel that a more thorough summative user study is needed to assess the overall quality

95

of critiques as the tool has been redesigned since this study.

5.2 Evaluation of CriticAL on Users’ Programs

In this section we will evaluate CriticAL both for performance and utility using real users’

programs. For performance, we will use 90 runnable programs collected in the case study

of Chapter 2 from the Java Swing forum as well as 75 runnable programs downloaded from

the official Swing tutorials 2. For utility, we will use the samples collected from the forum

only because we are familiar with the problems of the users and their source code, which

will help us assess the utility of critiques more thoroughly. Furthermore, code from the

official Swing tutorials are prepared by experts and would not have issues faced by real

novice programmers.

5.2.1 Evaluation of Performance

We downloaded a fresh copy of the Eclipse Classic (version 3.7.1) IDE from 3. After in-

stalling the latest version of CriticAL (version 1.0.20.beta) from 4, we configured two Java

projects in the IDE: one for the code collected from the Swing forum (SF) and another for

the code collected from the Swing tutorials (ST). Note that each project contained multiple

executable programs: 90 in SF and 75 in ST. Both projects were run separately and were

monitored using a specialized logging module developed just for the task.

The machine used for the test was a Mac Book Pro laptop with the following specifica-

tion: 2.4 Ghz Intel Core 2 Duo Processor, 2 GB main memory, Mac OSX 10.5.8 operating

system. The Eclipse IDE was configured with 800 MB of starting memory and 1024 MB

of the maximum memory using Java Virtual Machine (JVM) arguments. The default JVM

in Mac OSX (JVM 1.6) was used for running CriticAL. Note that the system memory log

showed that only 480 MB of the main memory was used at maximum during the analysis

of the two projects.

2http://docs.oracle.com/javase/tutorial/uiswing/examples/components/index.html
3http://eclipse.org/downloads/
4http://sf.net/projects/critical/files/updatesite/

96

http://docs.oracle.com/javase/tutorial/uiswing/examples/components/index.html
http://eclipse.org/downloads/
http://sf.net/projects/critical/files/updatesite/

Table 5.2: Performance evaluation of CriticAL on code from the forum and tutorials.

Description Statements Time (ms) Loops Paths

Swing Forum (SF): 90 programs

Minimum 6 5 0 1

Maximum 265 706 6 2

Average 84.78 108.70 0.34 1.01

Median 68.50 56 0 1

Std. Dev. 54.51 128.11 0.84 0.11

Total 7630 9783 31 91

Swing Tutorials (ST): 75 programs

Minimum 11 3 0 1

Maximum 780 8039 2 13

Average 151.52 184.72 0.20 1.52

Median 110 53 0 1

Std. Dev. 130.97 926.69 0.49 1.54

Total 11364 13854 15 114

Table 5.2 summarizes the analysis of the performance for the programs in the two

projects. The table shows that even though there is a significant variation in the number

of Jimple statements executed per program and the time taken for processing, the number

of paths produced and loops unrolled remained quite consistent at 1 (std. dev. 0.11 for

SF and 1.54 for ST) and 0 (std. dev 0.84 and 0.49), respectively. Hence, the explosion of

paths and processing of loops are not a major issue in processing GUI code for CriticAL.

We observed such a behavior because a GUI code is mostly linear in nature that involves

composing multiple API elements together through function calls rather than algorithmic

code which involves lots of if and switch-case statements. In total, CriticAL took about 10

seconds to process about 8,000 Jimple statements in SF and about 14 seconds to process

about 11,000 statements in ST. Figure 5.2 shows traces of time versus statements during

the execution of programs in the two projects. Figure 5.2(a) shows that the majority of

programs in SF contained less than 300 Jimple statements. Also, the execution time for the

majority of programs was well below 1 second (see Figure 5.2(b)). The program in ST were

relatively longer than SF but the majority of them were less than 300 Jimple statements

long (Figure 5.2(c)). The execution time for programs in ST were also relatively longer

97

than SF, however, below 2.5 seconds tops (Figure 5.2(d)).

Even though the total running time for SF and ST were about 10 and 14 seconds, re-

spectively, the actual time from the start to finish for the two projects were approximately

37 seconds and 47 seconds, respectively. The extra time was taken for loading all of the

programs in SOOT and for translating the Java byte code to the Jimple IR. 79 % and

76 % of the total time was spent in creating Jimple IR for the programs from SF and

ST, respectively, which was the major bottleneck for the performance of CriticAL. Never-

theless, both of the projects were analyzed within a minute. We conclude that CriticAL

performed reasonably well in analyzing approximately ten thousand Jimple statements for

both benchmark projects (Table 5.2).

5.2.2 Evaluation of Utility

In Chapter 2, we presented rules that were identified during the manual analysis of the Java

Swing forum. In this section, we will summarize the current status of CriticAL in terms

of the implementation of those rules and the number of criticisms, recommendations, and

explanations generated by CriticAL for the 90 programs collected from the Swing Forum.

Table 5.3 summarizes the criticisms generated by CriticAL for SF. The True Pos. label

means true positives and the False Pos. mean false positives. The rate of false positives is

resonably low at 8.21 %. The code snippet for each rules can be found in Section 2.3 except

for he ones marked with a *. We will discuss the three rules added on top of Table 2.1 next

and discuss the reason for false positives in Section 5.2.3.

JFrame Invisible: This rule enforces that after a JFrame is created, it must be visible

before the end of the program, which can be achieved by calling JFrame.setVisible(true).

We have dicussed this rule with an example in Section 1.1.1.

Empty Container: This rule criticizes having an empty container (JPanel) whose layout

has been explicitly set. The reason to have a layout manager in a container is to arrange

its child widgets properly, hence, when a layout is explicitly set on a container, we require

that the user add a widget to the container or not set the layout at all.

98

(a) SF - Time vs Statements.

(b) SF - Execution trace of 90 programs.

(c) ST - Time vs Statements.

(d) ST - Execution trace of 75 program.

Figure 5.2: Execution trace of CriticAL on code from the forum and tutorials.

99

Table 5.3: Evaluation of Criticisms. (Note that * represents the rule that has been added
on top of Table 2.1.)

API Criticism Rules Implementation True Pos. False Pos.

Postconditions

Orphan GUI Objects Yes 63 (47.01%) 7 (5.22%)

Missing Layout Constraints No - -

Parent Switching Yes 8 (5.97%) 0

Misplaced Layout Constraints Partially 0 0

*JFrame Invisible Yes 1 (0.74%) 4 (2.98%)

*Empty Container Yes 2 (1.49%) 0

Invariants

Content Mismatch Yes 4 (2.98%) 0

Dynamic GUIs Yes 2 (1.49%) 0

One Layout, One Container Yes 3 (2.23%) 0

Preconditions

JFrame.pack() Constraints Yes 13 (9.70%) 0

Positioning and Sizing Constraints Yes. 1 (0.74%) 0

*Redundant Action Yes. 21 (15.67%) 0

Deviation from Usage Conventions

Components Resizing Behavior No - -

Table Design Yes 5 (3.73 %) 0

Total 123 (91.79%) 11 (8.20%)

Redundant Action: By default, the content pane of JFrame has a BorderLayout and a

newly created JPanel has a FlowLayout as its layout manager. We have seen cases where

users reset the same kind of layout manager on these widgets, which is redundant and shows

a sign of confusion on the part of users. Hence, we criticize this behavior.

Table 5.4 and 5.5 sumarizes the explanations and recommendations generated for the

programs in SF. It is natural to see so many explanations and recommendation produced

because they do not represent problems in the code but explain the behavior of the code

and provide suggestions on the next useful API elements. Hence, to properly assess the

quality of explanations and recommendations, we need to perform a summative user case

study as a future work. The discussion on rules for explanations and code snippets can be

found in Section 2.4 (also see Table 2.2) and for recommendations in Section 2.5 (also see

Table 2.3).

100

Table 5.4: Summary of Explanations.

API Explanation Rules Implemented True Pos. False Pos.

Behavior of Null Layout Yes 18 (9.42%) 0

Behavior of GridbagLayout No - -

Resizing Behavior of BorderLayout No - -

API Specific Explanations Partly 173 (90.57%) 0

Total 191 0

Table 5.5: Summary of Recommendations.

API Recommendation Rules Implemented True Pos. False Pos.

Generic Recommendations No - -

Syntax-Based Recommendations Yes 15 (6.25%) 0
(Confusing APIs / Lite Context)

State-Based Recommendations Partly 222 (92.50%) 3 (1.25%)
(Unused Features / Alternative Design)

Total 237 (98.75%) 3 (1.25%)

5.2.3 Reason for False Positives

False positives in CriticAL are produced mostly due to the compromises made in its design.

In this section, we will categorize the root causes of false positive and discuss their fixes.

Table 5.6 summarizes root causes for false positives. The major cause of false positives for

the programs in SF was unsupported API elements. We will discuss each in details.

Table 5.6: Analysis of False Positives. (C: Criticism and R: Recommendation)

Root Causes Critiques Type Total

Entry Point C (3) 3 (21.42%)

Loop Unrolling C (2) 2 (14.28%)

Unsupported API Elements C (5), R(3) 8 (57.14%)

Implementation Bugs C (1) 1 (7.14%)

Total 14

101

Listing 5.2: An entry point problem.� �
1 public static class TEST {
2 private JFrame frame;
3 public static void main(String[] args) { new TEST(); }
4 public TEST() {
5 makeFrame();
6 frame.pack();
7 frame.setVisible(true);
8 }
9 public void makeFrame() {

10 frame = new JFrame (”Test”);
11 Container content = frame.getContentPane();
12 ... // Populate the content pane with other widgets
13 }
14 } 	� �

Entry Point

CriticAL is a symbolic execution framework. It requires an entry point to start the analysis.

In our design of the Swing exetension plugin, we chose the method that initializes a JFrame

as an entry point for analysis. There was a problem with this approach. Consider the

example shown in Listing 5.2 5. Even though the JFrame is initialized in makeFrame(), it

is not set to visible until the method returns to the construtor TEST() in line 7. However,

our execution starts and end within the makeFrame() method. CriticAL, thus, complains

that the JFrame initialized at line 10 is not visible at the end of the program (line 13).

This problem can be solved by using the call graph of the entire program to recursively

look for the top-level methods which refers to a JFrame in its body. For this example, the

method would be Test() (line 4). Hence, choosing such a method as an entry point helps

solve this issue. The other two false positives in this category can be found in 6 7. These

two false positives are due to thread invocation related control flow that CriticAL currently

does not handle.

102

Listing 5.3: A loop unrolling problem.� �
1 public static class Fubar3 {
2 private JPanel mainPanel = new JPanel();
3 private JTextField nameField = new JTextField(12);
4 private JTextField ageField = new JTextField(12);
5 private JTextField salaryField = new JTextField(12);
6 private JTextField positionField = new JTextField(12);
7 private JTextField[] fields = {nameField, ageField, salaryField, positionField};
8 public Fubar3() {
9 JPanel componentPanel = new JPanel(new GridLayout(0, 1, 10, 10));

10 for (int i = 0; i < fields.length; i++) {
11 componentPanel.add(fields[i]);
12 }
13 ...
14 mainPanel.add(componentPanel);
15 }
16 private static void createAndShowUI() {
17 JFrame frame = new JFrame(”Fubar3”);
18 frame.getContentPane().add(new Fubar3().getMainPanel());
19 ...
20 frame.setVisible(true);
21 } ...
22 } 	� �

Loop Unrolling

By default, CriticAL unrolls a loop only twice. While this approach is enough to expose

most of the problems related to GUI widgets, however, it may also introduce false posi-

tives. Consider the code snippet in Listing 5.3 8. When a new Fubar3 object is created

in line 18, it also creates the four text fields in lines 3-6 and assign them to the fields

array (line 7). The control then reaches the code in line 10-12, which add all of the text

fields to componentPanel. The componentPanel panel is then added to the mainPanel,

which is returned to line 18 as a return value of the getMainPanel() method. When sym-

bolically executing this piece of code, the loop only gets unrolled twice, thus, adding only

nameField and ageField to componentPanel. As a result, when the symbolic execution

reaches the end (line 21), CriticAL finds that salaryField and positionField are orphans

5https://forums.oracle.com/forums/thread.jspa?messageID=5721812
6https://forums.oracle.com/forums/thread.jspa?messageID=5811399
7http://forums.oracle.com/forums/thread.jspa?messageID=5881971
8http://forums.oracle.com/forums/thread.jspa?messageID=5758895

103

https://forums.oracle.com/forums/thread.jspa?messageID=5721812
https://forums.oracle.com/forums/thread.jspa?messageID=5811399
http://forums.oracle.com/forums/thread.jspa?messageID=5881971
http://forums.oracle.com/forums/thread.jspa?messageID=5758895

and criticizes the code, which in fact are false positives.

Currently, CriticAL unrolls a loop (with an open or a known loop condition) only twice.

Bounding loop to a defined limit is a well-known strategy in the symbolic execution liter-

ature [10, 12]. The false positive for this example could be avoided by not enforcing the

unrolling limit for a loop with a known loop condition. Because the length of the array

is known, the loop in this example will stop after four iterations. However, when a code

has an infinite loop, CriticAL will not return back if this approach is used as a general

solution. Hence, as a general solution to this problem, CriticAL could be configured with a

number greater than four for the loop unrolling limit. A loop unrolling limit must be chosen

carefully to balance accuracy and performance of CriticAL. A lower limit will make analysis

faster by producing fewer paths but at the cost of precision. Choosing a higher limit will

make the analysis more precise but CriticAL will run longer and at times may even suffer

path explosion. Nevertheless, we only found two false-positives due to loop unrolling in the

same source file and hence, the current limit is good enough for the majority of user’s code

in SF.

Unsupported API Elements and Implementation Bugs

While we tried to support most of the important API methods related to layout and GUI

components, we did not cover them all. We have a few cases where the reason for false-

positives are the unsupported API methods. Consider the code snippet in Listing 5.4 9.

The mainFrame.add() method in line 8 actually adds fatPanel to the content pane of the

JFrame. Since we did not support the JFrame.add() method, CriticAL found mainFrame

to be empty at the end of the program and produced a recommendation on adding new

widgets to the frame. Furthermore, one recommendation is also produced on how to add

widgets to an empty JFrame due to this problem. Similarly, we do not have a good support

for the API methods of JWindow, which also contributed to other four false-positives in this

category for criticisms and two for recommendations 10.

9http://forums.oracle.com/forums/thread.jspa?messageID=5694617
10http://forums.oracle.com/forums/thread.jspa?messageID=9281019

104

http://forums.oracle.com/forums/thread.jspa?messageID=5694617
http://forums.oracle.com/forums/thread.jspa?messageID=9281019

Listing 5.4: A problem due to an unsupported API method.� �
1 public static class GuiExample extends JFrame {
2 private JFrame mainFrame = new JFrame();
3 private FatherPanel fatPanel;
4

5 public void makeUI() {
6 fatPanel = new FatherPanel();
7 ...
8 mainFrame.add(fatPanel, BorderLayout.CENTER);
9 mainFrame.pack();

10 mainFrame.setVisible(true);
11 }
12 } 	� �

These issues can be resolved by implementing a proper support for these API elements.

After testing CriticAL on multiple projects, we hope to collect more of such corner cases

and implement support for them in the future. Finally, the last false-positive in Table 5.6

is produced due to an implementation bug, which can be fixed through debugging and will

not be discussed further.

5.3 Efforts in Implementing API Rules

Typically, implementing a rule and creating a critique takes from 10-15 lines of code. The

behavior as well as all of the rules involved with JComponent have been implemented in

less than 1000 lines of code and that of JFrame have been implemented in less than 500

lines of code. All of the other components have been implemented in less than 100 lines

of code each. Hence, we can safely conclude that supporting an API through the CriticAL

framework is a relatively simple task. However, finding a rule that needs to be enforced

may be a time consuming process as we experienced in Chapter 2.

5.4 Conclusion

We have evaluated CriticAL using a formative user study as well as through users’ programs

collected from the Java Swing forum. It has produced many useful critiques for the code

105

written by novices within a matter of a few seconds and with a low rate of false positives.

Nevertheless, the presence of false positives may confuse a novice programmer. Hence, to

properly help a programmer, the advice generated by CriticAL should not only mention

about the problems but also provide an overview of the rule and the context in which the

advice was generated. This approach may help a programmer decide whether the generated

critiques are real problems or false positives.

106

Chapter 6

Related Work

6.1 Study of the API-Usability Problem

Ko et al have identified six learning barriers in their study of 40 novice programmers learning

Visual Basic [43]. These barriers take account of several factors such as design, selection,

coordination, use, understanding, and the availability of information about APIs. Based

on their observations, they make recommendations for improving end-user programming

systems by providing more examples, making search experience better, making the invisible

system’s rules more visible through errors messages from tools, making the development

environment more interactive, and developing tools that could explain some of the complex

behavior of the APIs to the novices. The recommendations made by Ko et al align closely

with the goals for the Critic system proposed by Fischer et al in [17] and to that of ours for

CriticAL [53].

A case study with the Swing Forum in [33] reinforces Ko’s learning barriers for the pro-

grammers of the Java Swing API. Furthermore, Robillard’s qualitative analysis of the API

learning difficulties percieved by Microsoft’s developers [48,49]; Hou’s quantitative analysis

of framework learning difficulties for undergraduate students [31]; Ko’s qualitative studies

on the role of conceptual knowledge about frameworks [41]; and other case studies of the

Swing framework [34,35]; all point to the importance of design knowledge about frameworks

107

for the proper reuse of APIs. Some of the challenges reported in Robillard el al studies arise

from the lack of resources such as online API documentation and code snippets, inadequate

design documentation, complicated API design, and the lack of background knowledge of the

systems. They emphasize on documenting the intent behind APIs, providing code examples

containing several matching API elements and usage scenarios, and properly formating the

API documentation for clear presentation. In contrast, we attempt to connect the design

knowledge about a framework to programmers at a fine grained level of framework rules

identified through our case study research in Chapter 2.

6.2 API Critic

A reuse-based system may not be used in the best possible ways that it is originally designed

for. Instead, users often settle for a suboptimal set of available solutions that are just enough

for their current tasks [17]. There are several causes to this problem. A user may not know

what functionalities are available, what is the best solution among multiple alternatives, how

he can use these functionalities, or how he can combine, adapt, and modify them. To address

this problem, Fischer envisions an architectural design for a development environment that

encompasses such tools as visualization, explanation, recommendation, and critics, to help

programmers work with the framework and APIs [17]. Several critics have been developed

including one for the Lisp programming language [19–22]. CriticAL, is the first for the Java

programming language.

Like CriticAL, the Lisp critic facilitate incremental learning and support learning on

demand [18]. It also requires rules and documentation to produce useful advice. However,

unlike CriticAL, the rules are matched using structure of the program (or syntax). CriticAL

models the state or behavior of a Java program, which makes it more resilient to syntactic

variations, thus, requiring less number of rules to attack problems that share the same

semantics but different syntactic patterns.

108

6.3 Related API Tools

Extensive past work has been done in searching [7, 26, 60], explaining and exploring exam-

ples [19, 47, 51], and understanding and debugging [42]. While understanding framework

design is important, it is also important to find the right API and API elements for the

programming task. Code search tools such as Blueprint [3] brings code snippets to the IDE

based on search keywords. Other tools [26,29,60] help programmers locate documentation,

examples, and related projects on the web. Nevertheless, novice programmers often find it

hard to formulate a useful search query to get the relevant results [41] and to assess the

quality of the results. We, on the other hand, do not require any keywords from program-

mers and directly work on the available source code to produce relevant suggestions for

their programming needs.

The main functionality of the search tools is to find code snippets and documents on

the basis of key words. Our tool should complement them. By adding the elements of code

pattern recognition and program understanding, it could better predict the relevancy of a

document to the code under analysis. But unlike theirs, we require the library providers to

write rules for API uses, which may be a burden. However, we have seen in Chapter 5 that

having a set of few potent rules can impact a large number of users’ code. Hence, such an

investment can be justified in the long run.

Tools such as MAPO [63] perform sequence analysis of API elements and could be used

to recommend the next set of API elements to novice programmers. Nevertheless, such a

tool does not make design inferences and may suggest APIs that are not relevant to the

problem, thus, further confusing them. Furthermore, tools for explaining program behavior

through multiple views have also been researched previously [47]. However, none of these

tools provide a unified way to present explanations, criticisms, and recommendations for

APIs that CriticAL provides.

109

6.4 Symbolic Execution

Use of symbolic objects for program testing was first proposed by King [40]. He envisioned

using symbols instead of real inputs in a program and executing it to test important prop-

erties of the program. The symbolic inputs would represent a class of inputs rather than

sample inputs and would be equivalent to a large number of normal test cases. He classi-

fied symbolic execution as a compromise between program verification where all inputs are

considered and testing where fixed inputs are considered.

Cousot et al. unify static analysis techniques including symbolic execution under ab-

stract interpretation in [6]. They describe the behavior of a program as a computation

of objects within a certain universe. They then describe an abstract interpretation of the

program as a computation of abstract objects in another universe whose outcome gives

certain information about the actual computation. The results of abstract interpretation

over-approximate the concrete program behavior and thus, are inherently incomplete but

useful.

Symbolic execution has been used by many for bounded program verification and model

checking such as in Forge [12], Kiassan [10], and Java Path Finder (JPF) [38]. Typically

such tools accept declarative specification in the form of program annotations. All of the

path conditions are expressed as constraints on symbolic variables and are conjoined with

specification and passed to a model checker. Since their job is to verify strong properties

of a program, they become infeasible as the client code increases in size and uses large

libraries. Khursid et al. proposed an approach for abstracting the behavior of library

code to make the symbolic execution more scalable in verification of the client code in

the Dianju tool [39]. The supported library classes were String, Set, and Map. The tool,

however, suffered problems with array manipulation because the symbolic execution of an

array index represented by an integer would refer to several array elements introducing a

path explosion during path exploration. Due to the linear nature of GUI-based code we did

not encounter these problems in our test cases. Nevertheless, CriticAL has not been tested

in a large code base to concretely reason about such problems.

110

Grechanik proposes a symbolic execution tool called Viola in his PhD dissertation to

find problems with interoperating components [25]. The tool checks whether the XML

parsing code used in two interoperating languages (C++ and Java) are based on a common

XML schema. This comparison is done after a series of pipelined processes are executed.

After extracting execution paths from a source code, the tool abstracts away the code

not related to XML processing. All of the API elements related to XML processing are

then translated to abstract operations: Navigate, Read, Write, Add, Delete, Load, and

Save. Viola symbolically executes these abstract operations to generate the corresponding

schema. A schema comparator algorithm is used to check if the generated schemas for the

code written in the two languages match with each other and to the actual schema. Any

discrepancies are reported to the user. Viola is a domain specific tool tailored for the XML

processing code and hence, may not be generalizable. CriticAL models the return value

of an unsupported API method using an open (non-deterministic) symbolic object. This

approach lets CriticAL do away with expanding such an API call. Different from Viola, it

generalizes the abstract operations to support more than just XML API methods or just

Swing methods. The abstraction for an API method is user defined and can be specified

through an extension plugin. Nevertheless, Viola and CriticAL share a similar technique

for bounding loops and recursive functions. The problem with the entry point selection,

however, is not clearly discussed in the dissertation.

GUI-based code uses call back methods or listeners to provide event-based functional-

ities, e.g., action listeners for buttons, which are not part of the main control-flow. We

inline the call back methods registered to the GUI widgets at the end of the path. The

ordering of user events may not be known statically hence we derive a combination of up

to k (configurable) callback methods at a time for inlining. i.e. if n listeners have been

registered in a path, we produce
(
n
k

)
different listener sequences and inline them at the end

of the path. Note that the current implementation, however, only supports inlining one

listener method at a time. This technique has also been used by others in the generation

of GUI test-cases [24, 45]. A survey of symbolic execution techniques can be found in [46]

111

Different from all of these verification tools that use symbolic execution, our prime goal is

advice generation, rather than program verification. In fact, CriticAL is the first use of

the symbolic execution technique to actively help programmers in the programming process

rather than just finding bugs in their code.

6.5 Static Analysis

We have borrowed some of the techniques described in [1, 57, 58] to achieve path-sensitive,

inter-procedural program analyses. Our analysis is not only path sensitive but also state-

sensitive, i.e. each object knows its state at every control point. We have used path-sensitive

static analysis previously in a model-finding tool called EQ 1 [52,56]. The tool can identify

the low-level programming errors such as NullPointerException and ClassCastException

using its path-sensitive, inter-procedural program analysis framework built on top of the

Jimple intermediate representation [61]. It further uses these paths to formulate a high-level

logical model in Alloy [37]. The Alloy model checker is then invoked automatically to detect

the semantic problems with the equivalence property of the Java classes. Other program

analysis tools such as FindBugs [36], SCL [32], Design Fragments [16], and Athena [44] only

provide criticisms for the design and implementation bugs and do not focus on recommen-

dations and explanations.

FindBugs [36] is a flow-sensitive, intra-procedural program analysis tool. It uses several

data-flow analyses to accumulate the information about a code. Error patterns can be

programmatically specified using the result of the flow analyses as an extension to the

tool. CriticAL, on the other hand, is a path-sensitive, inter-procedural program analysis

framework that relies on symbolic execution.

SCL [32] (and its precursor FCL [30]) share the same vision as that of CriticAL, i.e.

to support API-based programming. SCL is a structure-based program analysis tool that

checks for a contract violation based on the syntax of the API-client code. The same is

true for Design Fragments [16]. CriticAL, on the other hand, is a behavior based tool and

1http://eqchecker.sourceforge.net/

112

models the program state abstractly to reason about the API-client code.

Athena [44], a path-sensitive, inter-procedural program analysis tool developed by Le

and Sofa helps detect programming faults along a path. They make the observation that

not all of the programming paths are relevant to the faults that need to be detected and

not all of the statements in the path contribute to the faults of interest. Hence, they

apply a demand-driven strategy to fault detection based on dependencies between program

variables that helps them explore only the paths that are relevant to the faults of interest.

CriticAL models the return value of an irrelevant API method as an open-symbolic object,

thus, doing away with expanding the method. Nevertheless, it symbolically executes all of

the paths from an entry method. Entry methods can be configured in CriticAL to slice

away program segments that are irrelevant to the properties of interest. This strategy helps

CriticAL focus only on the code that needs to be supported.

6.6 Dynamic Analysis

CriticAL is closely related to the Whyline tool [42] in that both tools reason about program

states. However, while Whyline answers pre-defined “why did” and “why didn’t” questions

by tracking the concrete values of program variables and their causalities through dynamic

execution, CriticAL offers greater flexibility in terms of defining the possible API usage

rules, hence has stronger capabilities in criticizing and explaining API behavior, and in

producing recommendations. Furthermore, Whyline reasons about one execution trace at

a time and, thus, requires multiple runs to have enough branch coverage, whereas CritcAL

symbolically executes all possible execution traces in a single run.

6.7 Program Verification

Program verification techniques encode either programs [13,62] or path conditions as logic

formulae [11,12,38] and solve the verification problem with a constraint solver or a theorem

prover. Other verification techniques include theorem-prover-based approaches such as

113

ESC/Java [23]. These techniques specify the pre and post conditions for a function and

check if the post condition holds at the end of the function. Other techniques use notation

such as LTL to reason about the temporal properties of a program using a model checker [2,

4, 5, 27].

CriticAL can also be used for checking the properties of a program in conceptually the

same way as pre/post condition based checking is done in program verification tools. The pre

and post conditions for CriticAL would be predicates whose arguments would be symbolic

objects and specified using the Java programming language itself. However, a constraint

solving module needs to be implemented in CriticAL for curbing false positives if used as

a verification tool. This application could be one of the future directions for CriticAL,

however, the current focus is not only in finding problems but to also have an engine [50]

that could provide explanations and recommendations for API-client code. Hence, CriticAL

differs from program verification tools in the problem domain.

Das et al. propose a path-sensitive program verification tool called ESP to check the

temporal properties of a program [8]. They only model the branches that are relevant to

the properties being checked in a program. Using this approach, they check the temporal

properties of the file IO API in GCC. CriticAL could also achieve a similar effect by ab-

stractly specifying the state of the IO streams through the corresponding open/close API

methods. CriticAL, however, does not merge the state of a property group as done in ESP,

thus, avoiding unsoundness resulting from the merging operation. Nevertheless, merging a

property group helps curb the path-explosion problem and reduces the memory footprint.

Because of this feature, ESP enumerates paths in the breadth-first fashion using a worklist

algorithm [8]. CriticAL, however, enumerates paths in the depth-first fashion and releases

the resources after a path has been completely processed. On encountering an unknown

branch condition, CriticAL clones the stack, however, sharing the symbolic objects between

the clones. Each shared symbolic object is cloned lazily just before a write operation. This

strategy helps CriticAL reduce the memory footprint during the analysis.

114

Chapter 7

Conclusion and Future Work

7.1 Conclusion

We saw that learning to use API is an intense process and comes with several challenges.

To cope with their difficulties in finding, understanding, and debugging API-based code, we

presented CriticAL that offered them with recommendations, explanations, and criticisms,

respectively. CriticAL took API usage rules as input, performed symbolic execution to

check that the client code had followed those rules properly, and generated advice as output

to help improve the client code.

Several framework rules were collected as a result of the case study of the Java Swing

forum. The study also showed that the API usage problems recur in practice and tool

support can be justified. Most of the rules collected from the case study were implemented

in CriticAL and tested with 90 users’ programs from the Swing forum and 75 programs

from the Swing tutorials. The evaluation showed encouraging result about the usefulness

of CriticAL with a low rate of false positives at 8.21%.

We foresee the use of CriticAL in both academia and industry. CriticAL could be

actively used in teaching new frameworks and libraries to students. It would complement

an instructor by serving as a programming assistant for the novice students when the

instructor is not available. Software industries who develop complicated frameworks and

115

libraries may also ship CriticAL as a part of their library bundle to help new programmers

learn their frameworks faster. Instead of the old-fashioned help documentation, CriticAL

would provide a contextual help to the programmers during the development phase.

Future research on CriticAL should be directed towards assessing the quality of critiques

by conducting a summative case study and towards generalizing CriticAL by supporting

more APIs and libraries.

7.2 Future Work

We saw some encouraging results of using CriticAL in Chapter 5. However, we feel that

there is some room for improvement. We will discuss the improvement for CriticAL in the

next few subsections.

7.2.1 Extending Swing Support

CriticAL can be further strengthened by adding more rules and supporting more API el-

ements in Java Swing. One interesting direction is supporting the resizing behavior of

components in the presence of a layout manager. Such a support would require us to stat-

ically reason about the size and location of each GUI component laid out by the layout

manager. Since there could be several arrangements of components as governed by layout

constraints, modeling those constraints using a constraint solver may help reason about the

layout and resizing behavior of the component more precisely. Research in this direction

may not only help in producing valuable criticisms but also in recommending alternative

solutions, such as recommending a more appropriate layout manager for the user’s task.

7.2.2 Conducting A Summative User-Case Study

We have evaluated CriticAL for utility using the observational user case study method [28]

and from the source code collected from the Java Swing forum. Even though we now

have some idea about the usefulness of CriticAL based on the formative case study and

our regular experience with CriticAL, we have not yet thoroughly evaluated CriticAL for

116

usability. We should further assess CriticAL in terms of learnability (should be easy to

learn), memorability (should be easy to remember previously done actions), errors (should

not crash or should have fewer errors), and satisfaction (user should find it pleasant to

use CriticAL) in the future. We need to perform a summative evaluation through a set of

questionnaires about users’ experience with CriticAL so that we can properly understand

users thoughts and experience about the quality of critiques produced by the tool.

7.2.3 Testing Generalizability of CriticAL

Another future direction for CriticAL would be to test its generalizability by extending

support to other APIs such as SWT, JDBC, JMX, and the Android platform. The SWT

toolkit is used for designing GUIs in Eclipse and uses similar design concepts as Swing.

Hence, an immediate extension of CriticAL could be SWT. In principle, CriticAL operates

on top of Jimple IR and should be able to support any language, API, or libraries that can

be translated to Jimple IR.

117

Bibliography

[1] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Compilers: Principles, Techniques,

and Tools (2nd Edition). Addison Wesley, 2006, pp. 903–964.

[2] T. Ball and S. K. Rajamani, “The SLAM project: debugging system software via static

analysis,” SIGPLAN Not., vol. 37, pp. 1–3, 2002.

[3] J. Brandt, M. Dontcheva, M. Weskamp, and S. R. Klemmer, “Example-centric pro-

gramming: Integrating web search into the development environment,” in CHI, 2010,

pp. 513–522.

[4] A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri, “NuSMV: a new Symbolic

Model Verifier,” in CAV, 1999, pp. 495–499.

[5] J. C. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach, C. S. Păsăreanu, Robby, and

H. Zheng, “Bandera: extracting finite-state models from java source code,” in ICSE,

2000, pp. 439–448.

[6] P. Cousot and R. Cousot, “Abstract interpretation: a unified lattice model for static

analysis of programs by construction or approximation of fixpoints,” in POPL, 1977,

pp. 238–252.

[7] B. Dagenais and H. Ossher, “Automatically locating framework extension examples,”

in FSE, 2008, pp. 203–213.

[8] M. Das, S. Lerner, and M. Seigle, “ESP: Path-sensitive Program Verification in Poly-

nomial Time,” in PLDI, 2002, pp. 57–68.

118

[9] J. Dean, D. Grove, and C. Chambers, “Optimization of Object-Oriented Programs

Using Static Class Hierarchy Analysis,” in ECOOP ’95, 1995, pp. 77–101.

[10] X. Deng, “Contract-based verification and test case generation for open systems,”

Ph.D. dissertation, Kansas State University, Manhattan, KS, USA, 2007.

[11] X. Deng, J. Lee, and Robby, “Bogor/kiasan: A k-bounded symbolic execution for

checking strong heap properties of open systems,” in ASE, 2006, pp. 157–166.

[12] G. D. Dennis, “A relational framework for bounded program verification,” Ph.D. dis-

sertation, Massachusetts Institute of Technology, Cambridge, MA, USA, 2009.

[13] J. Dolby, M. Vaziri, and F. Tip, “Finding bugs efficiently with a SAT solver,” in

ESEC-FSE, 2007, pp. 195–204.

[14] B. Dutertre and L. de Moura, “A fast linear-arithmetic solver for dpll(t),” in CAV.

Berlin, Heidelberg: Springer-Verlag, 2006, pp. 81–94.

[15] K. M. Eisenhardt, “Building Theories from Case Study Research,” Academy of Man-

agement Review, vol. 14, no. 4, pp. 532–550, 1989.

[16] G. Fairbanks, D. Garlan, and W. Scherlis, “Design Fragments Make Using Frameworks

Easier,” in OOPSLA, 2006, pp. 75–88.

[17] G. Fischer, “Cognitive view of reuse and redesign,” IEEE Softw., vol. 4, pp. 60–72,

July 1987.

[18] ——, “A critic for lisp,” in Proceedings of the 10th international joint conference on

Artificial intelligence - Volume 1, ser. IJCAI, 1987, pp. 177–184.

[19] G. Fischer, S. Henninger, and D. Redmiles, “Cognitive tools for locating and compre-

hending software objects for reuse,” in ICSE, 1991, pp. 318–328.

[20] G. Fischer, A. C. Lemke, T. W. Mastaglio, and A. I. Mørch, “Using critics to empower

users,” in CHI, 1990, pp. 337–347.

119

[21] ——, “The role of critiquing in cooperative problem solving,” ACM Trans. Inf. Syst.,

vol. 9, no. 2, pp. 123–151, 1991.

[22] G. Fischer, K. Nakakoji, J. Ostwald, G. Stahl, and T. Sumner, “Embedding computer-

based critics in the contexts of design,” in CHI, 1993, pp. 157–164.

[23] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and R. Stata,

“Extended static checking for java,” in PLDI, 2002, pp. 234–245.

[24] S. R. Ganov, C. Killmar, S. Khurshid, and D. E. Perry, “Test generation for graphical

user interfaces based on symbolic execution,” in AST, 2008, pp. 33–40.

[25] M. Grechanik, “Design and analysis of interoperating components,” Ph.D. dissertation,

University of Texas at Austin, Austin, TX, USA, 2007.

[26] M. Grechanik, C. Fu, Q. Xie, C. McMillan, D. Poshyvanyk, and C. Cumby, “A search

engine for finding highly relevant applications,” in ICSE, 2010, pp. 475–484.

[27] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre, “Lazy abstraction,” SIGPLAN

Not., vol. 37, pp. 58–70, 2002.

[28] D. M. Hilbert and D. F. Redmiles, “Extracting usability information from user interface

events,” ACM Comput. Surv., vol. 32, no. 4, pp. 384–421, Dec. 2000.

[29] R. Hoffmann, J. Fogarty, and D. S. Weld, “Assieme: finding and leveraging implicit

references in a web search interface for programmers,” in UIST, 2007, pp. 13–22.

[30] D. Hou, “Fcl: automatically detecting structural errors in framework-based develop-

ment,” Ph.D. dissertation, University of Alberta, Edmonton, Alta., Canada, 2004.

[31] ——, “Investigating the effects of framework design knowledge in example-based frame-

work learning,” in ICSM, 2008, pp. 37–46.

[32] D. Hou and H. J. Hoover, “Using SCL to Specify and Check Design Intent in Source

Code,” IEEE Trans. Softw. Eng., vol. 32, no. 6, pp. 404–423, 2006.

120

[33] D. Hou and L. Li, “Obstacles in using frameworks and APIs: An exploratory study of

programmers’ newsgroup discussions,” in ICPC, 2011, pp. 91–100.

[34] D. Hou, C. Rupakheti, and H. Hoover, “Documenting and evaluating scattered con-

cerns for framework usability: A case study,” in APSEC, 2008, pp. 213 –220.

[35] D. Hou, K. Wong, and H. J. Hoover, “What can programmer questions tell us about

frameworks?” in IWPC, 2005, pp. 87–96.

[36] D. Hovemeyer and W. Pugh, “Finding bugs is easy,” in Companion of OOPSLA 2004,

2004, onward! track.

[37] D. Jackson, Software Abstractions: Logic, Language, and Analysis. The MIT Press,

2006.

[38] S. Khurshid, C. S. Păsăreanu, and W. Visser, “Generalized symbolic execution for

model checking and testing,” in TACAS, 2003, pp. 553–568.

[39] S. Khurshid and Y. L. Suen, “Generalizing symbolic execution to library classes,”

SIGSOFT Softw. Eng. Notes, vol. 31, pp. 103–110, September 2005.

[40] J. C. King, “Symbolic execution and program testing,” Commun. ACM, vol. 19, pp.

385–394, July 1976.

[41] A. J. Ko and Y. Riche, “The role of conceptual knowledge in API usability,” in

VL/HCC, 2011, pp. 173–176.

[42] A. J. Ko and B. A. Myers, “Debugging reinvented: asking and answering why and why

not questions about program behavior,” in ICSE, 2008, pp. 301–310.

[43] A. J. Ko, B. A. Myers, and H. H. Aung, “Six learning barriers in end-user programming

systems,” in VL/HCC, 2004, pp. 199–206.

[44] W. Le and M. L. Soffa, “Generating analyses for detecting faults in path segments,”

in ISSTA, 2011, pp. 320–330.

121

[45] A. Memon, I. Banerjee, and A. Nagarajan, “GUI ripping: Reverse engineering of

graphical user interfaces for testing,” in WCRE, 2003, pp. 260–269.

[46] C. S. Păsăreanu and W. Visser, “A survey of new trends in symbolic execution for

software testing and analysis,” Int. J. Softw. Tools Technol. Transf., vol. 11, no. 4, pp.

339–353, Oct. 2009.

[47] D. F. Redmiles, “Reducing the variability of programmers’ performance through ex-

plained examples,” in CHI, 1993, pp. 67–73.

[48] M. P. Robillard, “What makes APIs hard to learn? Answers from developers,” IEEE

Softw., vol. 26, pp. 26–34, 2009.

[49] M. P. Robillard and R. Deline, “A field study of api learning obstacles,” Empirical

Softw. Engg., vol. 16, pp. 703–732, 2011.

[50] M. P. Robillard, R. J. Walker, and T. Zimmermann, “Recommendation systems for

software engineering,” IEEE Software, vol. 27, no. 4, pp. 80–86, July/August 2010.

[51] M. B. Rosson, J. M. Carroll, and C. Sweeney, “A view matcher for reusing smalltalk

classes,” in CHI, 1991, pp. 277–283.

[52] C. R. Rupakheti and D. Hou, “An Abstraction-Oriented, Path-Based Approach for

Analyzing Object Equality in Java,” in WCRE, 2010, pp. 205–214.

[53] ——, “Satisfying programmers’ information needs in API-based programming,” in

ICPC, 2011, pp. 250–253.

[54] ——, “CriticAL: A Critic for APIs and Libraries,” in ICPC, 2012, 10 pp. (to appear).

[55] ——, “Evaluating Forum Discussions to Inform the Design of an API Critic,” in ICPC,

2012, 10 pp. (to appear).

[56] ——, “EQ: Checking the implementation of equality in Java,” in ICSM, 2011, pp.

590–593.

122

[57] B. G. Ryder, “Dimensions of precision in reference analysis of object-oriented program-

ming languages,” in CC’03, 2003, pp. 126–137.

[58] M. Sharir and A. Pnueli, “Two approaches to interprocedural data flow analysis,” in

Program Flow Analysis: Theory and Applications, S. Muchnick and N. Jones, Eds.

Englewood Cliffs, NJ: Prentice-Hall, 1981, pp. 189–233.

[59] B. G. Silverman, “Survey of expert critiquing systems: Practical and theoretical fron-

tiers,” Commun. ACM, vol. 35, no. 4, pp. 106–127, 1992.

[60] J. Stylos and B. A. Myers, “Mica: A web-search tool for finding API components and

examples,” in VLHCC, 2006, pp. 195–202.

[61] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundaresan, “Soot - a

Java Bytecode Optimization Framework,” in CASCON, 1999, pp. 125–135.

[62] M. Vaziri-Farahani, “Finding bugs in software with a constraint solver,” Ph.D. disser-

tation, MIT, MA, USA, 2004.

[63] T. Xie and J. Pei, “MAPO: mining API usages from open source repositories,” in MSR,

2006, pp. 54–57.

123

	Introduction
	Motivating Examples
	Case 1: Application of CriticAL in Reuse-based Development
	Case 2: Gentle Introduction to the Use of Symbolic State

	Contributions
	Overview of the Thesis

	Case Study
	Motivation
	Research Method
	Criticisms
	API Criticism Rules
	Case 1 (Orphan Objects, Content Mismatch, Missing Constraints)
	Case 2 (Parent Switching, Positioning and Sizing)
	Case 3 (Dynamic GUIs)
	Case 4 (Content Mismatch, Positioning and Sizing)
	Case 5 (Table Design, Resizing Conventions)

	Explanations
	Behavior of Null Layout
	Centering Behavior of GridbagLayout
	Resizing Behavior of BorderLayout
	API Specific Explanations

	Recommendations
	Generic Recommendations
	Syntax-Based Recommendation
	State-Based Recommendations

	Discussion
	Threats to Validity
	Conclusion

	The Design of CriticAL
	Architectural Overview of the Core
	Modeling Symbolic Objects
	Modeling Non-Primitive Types
	Modeling Primitive Types
	A Completeness Argument

	Interpreter
	Translation of Expressions
	Symbolic Execution Environment

	Execution Semantics
	Identity Statement
	Assignment Statement
	Executing Invoke Expressions
	Return Statements
	If Statement

	A Glimpse at the Constraint Solving Module
	Unrolling Loops
	Maximal Sharing Strategy
	Non-Escaping Newly Created Objects
	Conclusion

	Extending CriticAL
	Overview of the Extension Process
	Creating an Extension Plugin Project
	The serl.critic.swing Package
	The serl.critic.poi Package
	The serl.critic.types Package
	Supporting Listeners
	Action-Based Critiquing
	Supporting Static API Methods
	A Generalizability Argument

	Evaluation
	Formative Study
	Methodology
	Subjects
	Observation and Results
	Lessons Learned

	Evaluation of CriticAL on Users' Programs
	Evaluation of Performance
	Evaluation of Utility
	Reason for False Positives

	Efforts in Implementing API Rules
	Conclusion

	Related Work
	Study of the API-Usability Problem
	API Critic
	Related API Tools
	Symbolic Execution
	Static Analysis
	Dynamic Analysis
	Program Verification

	Conclusion and Future Work
	Conclusion
	Future Work
	Extending Swing Support
	Conducting A Summative User-Case Study
	Testing Generalizability of CriticAL

