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Abstract

Applications built on top of an existing design and implementation are in general expected

to collaborate well with that design and respect all of its intent. Failure in achieving this

may result in buggy, fragile, and less maintainable code in the applications. When the

dependence on an existing design becomes more widespread, this requirement on proper

extension obviously becomes even more critical. As an instance of this general problem, the

design for object equality in Java and its extensions are examined in detail and empirically.

By examining how object equality is extended in a large amount of Java code, a set of

typical problems are detected through a checker and their root causes analyzed. A set of

design guidelines for object equality is proposed, which, if followed, will help programers

systematically design and evolve rather than hack a solution. Examples are drawn from

a case study of multiple industrial and open source projects to illustrate the identified

problems and how the proposed guidelines can help solve these problems. Furthermore, a

complete set of unsupportable problems are also discussed to show the limitation of the

techniques and the complexity in the implementation of the checker.
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Chapter 1

Introduction

1.1 Equivalence Relation in Java

It is common for object-oriented programming languages like Java and C# to provide a

useful set of collection data types like set, map, vector, and hash table [42, 33] 1. In order

to work as elements inside such a container data structure, application objects need to

support an equality predicate with which a pair of objects can be compared. The design

adopted by both Java and C# is to specify a contract for equality in the Object class, which

is expected to be supported by all other application classes. In this way, the collection data

types can be implemented with the assumption that the element objects will honor this

equality contract.

In particular, in Java, the equals(Object) method in the java.lang.Object class is designed

to support the work of collection types. As its behavioral specification, the equals method

is required to implement an equivalence relation on any two non-null object references x

and y, supporting the following properties:

1. Reflexivity: x.equals(x) always returns true.

2. Symmetry: x.equals(y) returns true if and only if y.equals(x) returns true.
1This chapter in-part has been published in [37].
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3. Transitivity: for any non-null reference z, if x.equals(y) and y.equals(z) return true,

then x.equals(z) should return true.

4. Consistency: multiple invocations of x.equals(y) consistently return true or false,

provided that no information used in comparing the objects is modified.

5. Non-nullity 2: x.equals(null) must return false.

All objects that become an element of a collection from the Java Collection Framework [9]

must obey this contract in order to function properly inside the collection.

1 public class Point3D extends Point2D {
2 private int z; // the z coordinate
3 public boolean equals(Object o) {
5 if ((o instanceof Point3D)) {
6 return super.equals(o) &&
7 (Point3D)o.z==this.z;
8 }
9 else return super.equals(o);
10 }
11 }

Figure 1.1: An implementation of Point3D and equals() that violates transitivity (pp. 182
of [30], with modification of class names).

This issue of object equality is a general design problem present in both Java and C#.

It is also a long-standing problem that can be traced back to the Lisp community [7]. It has

a wide impact on many classes. For example, 624 classes in JDK 1.5 implement an equals()

method, covering areas such as security, corba implementation, utility classes, collection

types, GUI, and so on. However, implementing equals() to respect this contract needs

several considerations that can be easily overlooked by a developer, resulting in buggy or

fragile code. Such defects are notoriously difficult to find, even for experienced programmers.

To make matters worse, textbooks often present flawed versions of these critical operations

(e.g., the example shown in Figure 1.1) or give unsound advices. The understanding of

the problem is so vague that even popular Java IDEs like Eclipse 3.5 [17] and NetBeans

6.8 [35] have bugs in the equals() method generated through their wizard. It is also the

center of much controversy. For example, type-incompatible equality 3 between a supertype
2The term non-nullity is due to Bloch [10].
3Type-incompatible equality will be defined in Section 1.3.
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and a subtype would violate the well-known Liskov Substitution Principle [30, 31]. Should

type-incompatible equality be therefore prohibited? Furthermore, should mutable types be

allowed to define equals()?

1.2 Contribution

The thesis provides a broad insight on the process of designing, implementing and validating

an equals method. The contributions of this work can be summarized as follows:

Types of Equality We identify three different kind of equality: Type Compatible, Type

Incompatible and Hybrid Equality and provide reasons for such separation with ex-

amples. We also show how equals method implementation becomes error prone under

the lack of clear understanding of these equalities.

Variation in Equality Implementation By investigating several open source projects

including JDK 1.5, we show different variations and techniques for implementing

the equals method. Furthermore, we expose problems associated with several bad

implementations that can help the readers write a better equals.

Design guidelines We provide stepwise guidelines for designing and implementing the

equals method in a type hierarchy. These guidelines, if followed properly, will help

reduce problems associated with equals implementation.

Static Checker We develop a path-based static checker for identifying problems with

equals implementations. Path-based analysis has been avoided due to path explosion

problems in a whole program analysis. We show how a type hierarchy based program

slicing technique and filter as-you-go strategy significantly reduce unnecessary paths

while still providing a good static approximation of runtime behavior of the code.

We also show how a path-based analysis can be used for a Java to Alloy [26, 27] code

translation for model checking. This is done by first translating Java to Jimple [44] (A

3-address intermediated representation) from which control flow paths are extracted

3



and converted to Alloy module.

Pattern Detection and Alloy Model We present several pattern detection algorithm

for equals code patterns that can be abstracted to a much higher level logical construct

in Alloy. While doing so, we develop models for different Java-based data structures

in Alloy. In particular, we show abstraction techniques for Java Arrays, Lists, Sets

and Maps data structures. Furthermore, the multiple inheritance model of Java in

Alloy is also discussed.

False Positives and Checker Limitations We validate our checker by applying it to

several open source projects. We discuss reported problems, false positives and most

importantly, we categorize different instances of equals implementation that are not

handled by the checker or could not be translated to the Alloy model for model

checking. This will not only help identify the limitation of our approach, but also

provides insight into future research directions.

The thesis is organized as follows: In Chapter 1, we distinguish three kinds of equality

and elaborate on their implementations. A preliminary case study of the equality design

is performed with the help of four open source projects in Chapter 2. Findings from the

case study are then used for building a path-based static checker for analyzing equals im-

plementations in Chapter 3. A full-scale validation of the checker is done in Chapter 4 with

categorical reporting of detected problems and false positives. In, Chapter 5 we present

related work and finally in Chapter 6 we present future work and conclude the thesis.

1.3 Design Intent and Implementation Patterns for Equality

In this section, the equality relation is analyzed and three kinds of equality (type-compatible,

type-incompatible, and hybrid equality) are introduced. Their relation with a type hierarchy

and how they can be designed and implemented properly in a type hierarchy is described.

In particular, the relation between type-incompatible equality and subtyping is discussed.
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p1=new Point2D(1,2);
p2=new Point2D(1,2);
p3=new Point3D(1,2,3);
p4=new Point3D(1,2,3);
p5=new Point3D(1,2,4);
p6=new Point3D(1,2,4);

p1 p2 p3 p4 p5 p6

(a) Reference equality

p1 p2 p3 p4 p5 p6

(b) Type-compatible
equality defined in terms
of x, y, or both

p1 p2 p3 p4 p5 p6

(c) Type-incompatible

p1 p2 p3 p4 p5 p6

(d) Type-incompatible
equality

Figure 1.2: Examples of equality relations for Point2D and Point3D. For Point3D, the
equality in 1.2c is defined in terms of x, y, and z, and the one in 1.2d is defined in terms
of x and y. The links between two nodes represent equality. Links that can be inferred via
transitivity are omitted for clarity.

1.3.1 Type, state, and equality relation

A type is defined by a value space (a.k.a state) of named properties as well as operations

on the value space. For example, an object of type Point2D may have two properties,

the x and y cartesian coordinates, and setters and getters for these properties. Two types

may be related by subtyping, which is governed by the Liskov Substitution Principle (LSP

hereafter) such that an object of a subtype can be substituted for an object of a supertype

in all contexts where a supertype object is expected [30, 31]. For example, if it is intended

and is legitimate for a Point3D object to appear in all of the contexts where a Point2D

is used, then Point3D can be made a subtype of Point2D. Note that the appropriateness

of subtyping is often determined by domain semantics and contexts of use. Finally, each

object has a reference (address) that uniquely identifies the object, and each object has one

or more types.

Given a set of objects, multiple equivalence relations can be defined. In theory, given

a set of objects that share n properties, 2n equivalence relations can be defined in terms

of these properties. Figure 1.2 shows several examples of equality defined for objects of

Point2D and Point3D.

There are two special cases of equality. One is reference equality 4 where an object is

uniquely identified by its reference, and thus can be equal only to itself. Therefore, ref-
4Bloch uses identity equality for what we call reference equality. [10]
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1 public class Point2D {
2 ... defining representation & operations
3 public boolean equals(Object o) {
4 if (!(o instanceof Point2D))

return false;
5 Point2D that = (Point2D)o;
6 return this.getX() == that.getX() &&
7 this.getY() == that.getY();
8 }
9 }

Figure 1.3: Implementing type-compatible equality with instanceof.

erence equality is the most discriminating equality relation. The default implementation

in Object.equals() is a reference equality. When reference equality is too discriminating

to be useful, the default implementation can be overridden by another notion of equality

based on domain semantics. The other special case of equality, which we call full equal-

ity, takes into account the full value space of objects. Full equality is a special case of

domain-semantics-based equality and is suitable for testing whether two objects are fully

behaviorally equivalent rather than just partially similar.

1.3.2 Type-compatible and type-incompatible equality

As the first step in designing an equality relation, it is always helpful to distinguish between

the following two intents with respect to a notion of compatibility between object types.

Type-compatible equality is determined by comparing a subset of common properties between

two types S and T, which may or may not be in the same type hierarchy. Type-incompatible

equality requires that only objects from the same type can possibly be considered equal,

and the equality between any pair of objects from the same type can be further determined

by comparing a subset of the properties between the two objects.

If two types involved in a type-compatible equality form a type hierarchy, the type

hierarchy can help reduce the number of equals needed to be implemented due to inheritance

and dynamic dispatching [30]. Figure 1.3 illustrates how an equality between Point2D

(superclass) and Point3D (subclass) can be implemented by equals() in class Point2D and

inherited by Point3D. The type testing at line 4 checks whether o can be type-cast to

Point2D. o instanceof Point2D will return true if o’s type is either Point2D or one of its
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1 public class Point2D {
2 ... defining representation & operations
3 public boolean equals(Object o) {
4 if (o==null) return false;
5 try { Point2D that = (Point2D)o;
6 return this.getX()==that.getX()&&
7 this.getY() == that.getY();
8 } catch (ClassCastException cce){
9 return false;
10 }
11 }
12 }

Figure 1.4: Implementing type-compatible equality with exception handling rather than
instanceof.

1 public class Point2D {
2 ... defining representation & operations
3 public boolean equals(Object o) {
4 if (o == null) return false;
5 if (!o.getClass().equals(this.getClass())

return false;
6 Point2D that = (Point2D)o;
7 return this.getX() == that.getX() &&
8 this.getY() == that.getY();
9 }
10 }
11 public class Point3D extends Point2D{
12 ... defining representation & operations
13 public boolean equals(Object o) {
14 if (o == null) return false;
15 if (!o.getClass().equals(this.getClass())

return false;
16 Point3D that = (Point3D)o;
17 return this.getX() == that.getX() &&
18 this.getY() == that.getY() &&
19 this.getZ()==that.getZ();
20 }

}

Figure 1.5: Implementing type-incompatible equality with getClass().

subtypes, and it will return false when o is null. Line 5 does the type cast, and lines 6 and

7 compare the state.

The instanceof type testing can also be done with the exception handling mechanism.

Figure 1.4 shows an implementation that is functionally equivalent to the one in Figure 1.3.

While using exception handling may result in a small benefit in performance, it is not a

common way of implementing equals(). It also increases the number of implementation

patterns a developer has to master and understand.

Figure 1.5 shows an implementation for a type-incompatible equality between Point2D

and Poin3D. This implementation uses the Java reflection API getClass(), which returns

the runtime type of the receiver object. Therefore, the tests on lines 5 and 15 will permit
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only objects of the same type to pass. The null tests at lines 4 and 14 address the non-

nullity property and ensure the subsequent calls to getClass() will not throw null pointer

exceptions. When the equality is defined in terms of the same set of properties shared by

two types, subclasses may inherit equals() from the superclass rather than implement its

own. This is impossible for the example in Figure 1.5 because equals() in Point3D adds the

z dimension.

When two types involved in a type-incompatible equality are intended to form a sub-

typing relation but the two equals() are implemented in terms of their respective type and

state, the pair of equals() will be incompatible under LSP and will cause the two types

to not form a proper subtyping relation. (That is, the specification of Point2D.equals()

states that Point2D can only be equal to another Point2D that has identical x and y, and

Point3D.equals() states that Point3D can only be equal to another Point3D with identical

x, y, and z.) In this case, equals() should be excluded from the type specifications, and the

rest of the operations in the two types can still conform to LSP. It can then be required

that such equals() must not be used in contexts where objects of a subtype are substituted

for those of a supertype. But these two equals() do conform to LSP with Object.equals()

because the specification of Object.equals() is weaker than the afore-mentioned ones with

respect to how equality is exactly defined.

1.3.3 Hybrid equality

Sometimes, it can be useful or even necessary to define an equality that mixes type-

compatible and type-incompatible equality in the same hierarchy (hybrid equality). When

the main hierarchy is type-incompatible and a sub-hierarchy is type-compatible, they can be

implemented respectively using the techniques introduced above. However, when a type-

compatible hierarchy contains a type-incompatible sub-hierarchy, a new implementation

pattern is needed. In what follows, it is first shown that it is impossible to use the tech-

niques introduced so far to implement this kind of hybrid equality in a way that satisfies

the equals contract. An implementation for hybrid equality based on the template method
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pattern [22] is then introduced.

public boolean equals(Object o) {
if (!(o instanceof ColorPoint)) return false;

ColorPoint that = (ColorPoint)o;
return this.getX()==that.getX() &&

this.getY()==that.getY() &&
this.getColor() == that.getColor();

}

Figure 1.6: Color sensitive equals for ColorPoint.

Suppose a type-compatible equality has been implemented for Point2D and Point3D

as shown in Figure 1.3. Now a new subclass ColorPoint needs to be added to Point2D,

and suppose ColorPoint needs to implement a type-incompatible equality with regards to

Point2D and Point3D. Figure 1.6 shows an implementation that attempts to provide type-

incompatible equality at the ColorPoint side, but loses the symmetry property. The loss of

symmetry can be demonstrated by the following code snippet:

Point2D p1 = new Point2D(1,2);

ColorPoint p2 = new ColorPoint(1,2,Color.RED);

p1.equals(p2); // returns true

p2.equals(p1); // returns false (broken symmetry)

An attempt to fix the symmetry violation but at the expense of the transitivity property

is shown in Figure 1.7. The loss of transitivity can be illustrated by the following code

snippet:

ColorPoint p1 = new ColorPoint(1,2,Color.RED);

Point2D p2 = new Point(1,2);

ColorPoint p3 = new ColorPoint(1,2,Color.BLUE);

p1.equals(p2); // returns true

p2.equals(p3); // returns true

p1.equals(p3); // false (broken transitivity)

public boolean equals(Object o) {
if (!(o instanceof Point2D)) return false;
// For Point2D, ignore color in comparison
if (!(o instanceof ColorPoint))

return o.equals(this);
// o is a ColorPoint; compare color as well
ColorPoint that = (ColorPoint)o;
return this.getX()==that.getX() &&

this.getY()==that.getY() &&
this.getColor() == that.getColor();

}

Figure 1.7: Color insensitive equals for ColorPoint.
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The root cause of this problem on transitivity is that the two equality comparisons

that ColorPoint participates in make use of different properties. When compared with a

Point2D, color is ignored. When compared with a ColorPoint, color is included.

The loss of symmetry in the implementation of Figure 1.6 is caused by the fact that

equals() of Point2D fails to include the color property of ColorPoint. When the argument

is a ColorPoint, this implementation will compare only the x and y coordinates but not

the color, resulting in a violation of symmetry. This violation can be fixed by giving the

argument an opportunity to add its own properties in addition to those of the superclass.

Figure 1.8 shows how Point2D and ColorPoint can be modified to achieve this. No-

tice that a new method equalsDelegate() is introduced and called by equals() in Point2D.

ColorPoint overrides equalsDelegate() to add its type-specific comparison. In this case,

ColorPoint enforces the requirement that the argument must also be a ColorPoint. It can

be verified that the new implementation satisfies the equals contract. Also notice that

the equals() method is declared final so that no subtypes of Point2D can override it. An

incompatible subtype such as ColorPoint needs to override equalsDelegate() method to per-

form type-specific comparison. Compatible subtypes will simply inherit both equals() and

equalsDelegate().

public class Point2D {
public final boolean equals(Object o) {
if (!(o instanceof Point2D)) return false;
Point2D that = (Point2D)o;
return comparing x and y &&
// For symmetry not provided by instanceof
that.equalsDelegate(this)&&equalsDelegate(o);
}

// type-specific comparison. true by default.
protected boolean equalsDelegate(Object o) {

return true; }
// Remainder omitted

}

public class ColorPoint extends Point2D {
protected boolean equalsDelegate(Object o) {
if (!(o instanceof ColorPoint)) return false;
ColorPoint that = (ColorPoint)o;
// return the comparison of x, y, and color;
}

// Remainder omitted
}

Figure 1.8: Implementation of hybrid equality.
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1 public class Point2D {
2 ... defining representation & operations
3 public boolean equals(Object o) {
4 if (o == null) return false;
5 if (o.getClass().equals(Poin2D.class){
6 Point2D that = (Point2D)o;
7 return this.getX() == that.getX() &&
8 this.getY() == that.getY();
9 }
10 if (o.getClass().equals(Poin3D.class){
11 Point3D that = (Point3D)o;
12 return this.getX() == that.getX() &&
13 this.getY() == that.getY();
14 }
15 return false; }
16 }
1 public class Point3D {
2 ... defining representation & operations
3 public boolean equals(Object o) {
4 if (o == null) return false;
5 if (o.getClass().equals(Poin2D.class){
6 // return result of comparison
7 }
8 if (o.getClass().equals(Poin3D.class){
9 Point3D that = (Point3D)o;
10 // return result of comparison
11 }
12 return false;}
13 }

Figure 1.9: Implementing type-compatible equality between types not in the same hierarchy.

By calling equalsDelegate() twice (that.equalsDelegate(this) && equalsDelegate(o)), equals()

of Point2D in Figure 1.8 essentially provides a bi-directional check for the two types involved

in a comparison. As discussed above, the first check (that.equalsDelegate(this) is to give a

subtype an opportunity to do a subtype-specific comparison. The purpose of the second

check becomes evident when considering the evaluation of aColorPoint.equals(aPoint2D),

where equalsDelegate(o) will cause equalsDelegate() of ColorPoint to be called, which will

correctly return false.

It can be verified that all the implementations (Figures 1.3, 1.4, 1.5, and, 1.8) satisfy

the equals contract introduced in Section 1.1.

1.4 Discussion

It is even possible to define an equivalence relation where two objects from two different

type hierarchies are considered equal. Such equality may be useful in scenarios where both

kinds of objects are used as a key to a hash table. Two equals() need to be implemented, one
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for each type. Figure 1.9 shows how this can be done under the assumption that Point2D

and Point3D are independent classes. However, in the projects we studied, no instances of

equality were found being done in this way. This is probably because when two types share

properties, a type hierarchy can usually be designed to relate them. In this thesis, we focus

on the case where any two objects that are to be considered equivalent also belong to the

same type hierarchy and on how to design and implement equals() in a type hierarchy such

that the equals contract is respected.

Equality among objects from different types must be compared on the basis of the same

set of properties. The implementation in Figure 1.9 satisfies this requirement, but that of

Figure 1.1 does not.

Java’s design for equality can be restrictive. When an object needs to participate in

more than one hash table as a key under distinct notions of equality, distinct equality tests

are needed to work with each hash table. But the object can define only one equality

test (either via the equals() method in its class or by inheriting one). One way to work

around this limitation is to design a wrapper class with a pair of equals() and hashCode()

methods for each notion of equality and use as keys objects of the wrapper class rather than

the original objects. Another way in which Java’s design may become restrictive is when

an equality different from the one designated for hash table is needed for comparing two

objects directly. For example, a full equality may be needed to compare two objects of the

same type, but a weaker, type-compatible notion of equality is provided for the objects to

participate in the hash table, which is not suitable for the purpose of comparing objects.

When this kind of clashes happen, a method with a different name that reflects the right

intent, like similar() or identical(), must be added to the object’s class instead of attempting

the impossible task of overloading equals() for multiple purposes.
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Chapter 2

Preliminary Case Study

2.1 Introduction

To understand how equals() is implemented and what kinds of problems actually occur in

real-life code, we performed an empirical study of equals implementation in 4 Java projects

of various sizes and domains1. The study was conducted semi-automatically with a combi-

nation of both tool support and manual inspection. Several static checkers were developed

using Eclipse’s Java code analysis API [16] to search for code patterns that potentially vi-

olate the equals contract. The checkers were helpful in quickly processing large amounts of

code and directing our attention to cases that are more likely to have problems. However,

the design of the checkers is not the focus of this chapter. In fact, these checkers were

replaced with improved versions discussed in Chapter 3.

JDK1.5 Lucene 2.4 BCEL SCL
KLOC 2552 88 39 22.6
#packages 571 14 8 29
#classes 12400 752 333 386
#interfaces 1743 26 35 11
#equals 624 40 20 15

Table 2.1: Summary of case study projects.

1This chapter in-part has been published in [37].
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Problem Summary Section
Inheritance for implementation reuse 5 hierarchies 2.2.1
Equals for other purposes 9 classes 2.2.2
Type-incompatible equality 10 hierarchies 2.2.3
Type-compatible equality Several implementation of Map.Entry 2.2.4
Hybrid equality Map and List hierarchies 2.2.5
Evolution Rectangle2D and Point2D 2.2.6
super.equals() 98 2.2.7
Type casting 30 2.2.8
Null checking 26 2.2.8

Table 2.2: Summary of inspected equals()-related problems in JDK 1.5.

Table 2.1 provides some overall measures of the 4 projects, JDK 1.5, Apache Lucene

2.4 [4], BCEL [6], and SCL [24]. Apache Lucene is a full text search engine, BCEL is a

Byte Code Engineering Library, and SCL is a static analysis tool. JDK 1.5 is the largest

project (2552 KLOC, 12400 classes) and SCL (22.6 KLOC, 386 classes) is the smallest in

the group. These projects make use of the collection framework and rely on the correct

implementation of equals() to function properly.

2.2 Detected Problems

We find that JDK 1.5 is the most representative among the 4 projects in terms of the

diverse equals() related issues that are exhibited. We have seen a total of 174 suspicious

implementations of equals(), which cover a wide variety of areas such as collections, utility

classes, security, object broker protocol, component model, network management, compiler,

GUI and image processing, and naming services. In this section, we discuss the nature,

possible cause, and possible solution to the problems using JDK1.5 as a primary source of

examples. We provide both class names and package names so that interested readers can

verify with the JDK source code themselves. Table 2.2 provides a summary of the problems

in JDK 1.5 as well as the sections where further details can be found.
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2.2.1 Using inheritance for implementation reuse

When a class hierarchy is used for implementation reuse instead of subtyping [31], some

problems with equals() may be detected. The benefit of implementation reuse is, of course,

that one does not have to rewrite similar code again. But using inheritance for imple-

mentation reuse overloads the same mechanism with two purposes. When there is not

documentation of intent, it can be hard to tell which one, subtyping or reuse, is intended

just from the code. It becomes even worse when one part in a hierarchy is used for subtyping

and another for implementation reuse. DefaultCaret and its superclass Rectangle provide

such an example.

The Rectangle class (java.awt) and its superclasses, RectangularShape and Rectangle2D

(java.awt.geom), form a type hierarchy, and implement a type-compatible equality. The

relation among them is subtyping, and a Rectangle can behave like a Rectangle2D and a

RectangularShape. However, when the DefaultCaret class in the javax.swing.text package

is added as a subclass of Rectangle, the symmetry is lost in the equality implementation

because DefaultCaret implements the reference equality as follows:

/**

* Compares this object to the specified object.

* The superclass behavior of comparing

* rectangles is not desired, so this is changed

* to the Object behavior.

* ... (Remainder documentation omitted)

*/

public boolean equals(Object obj) {
return (this == obj);

}

As can be seen in the Javadoc above, clearly, the designer of DefaultCaret is overriding

equals() with a clear intention. However, this equals() violates the symmetry property as

follows:

Rectangle r = new Rectangle();

DefaultCaret c = new DefaultCaret();

r.equals(c); // returns true

c.equals(r); // returns false
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The root cause of this problem is using inheritance as implementation reuse. Default-

Caret, as its name suggests, implements a caret in a text box. When a caret is moved

to a new location, the area (a.k.a. bound box) where it was displayed last time needs to

be tracked and repainted. A bounding box happens to be a rectangle and DefaultCaret

was made a subclass of Rectangle so that it can inherit and use four instance variables x,

y, width, and height. In addition, it appears that these variables are intended to be pri-

vate to DefaultCaret. However, Rectangle contains methods that can change them (e.g.,

setRect(x,y,w,h)). Therefore, in this case, the benefit of reuse seems to be minor in com-

parison with the cost of documenting and ensuring that these inherited methods must not

be applied to DefaultCaret. A better design would be for DefaultCaret to compose rather

than inherit Rectangle.

There are several well-known examples of (improper) implementation reuse in JDK,

including Vector/Stack and Date/Timestamp. Our checker did not report equals-related

problem for Vector/Stack because they belong to the AbstractList hierarchy, which imple-

ments a type-compatible equality. The onus is on the developer to ensure that a vector

and a stack are never compared for equality, and mutators unique to a vector must not

be applied to a stack. Our checker does detect a symmetry problem between Date and

Timestamp (which extends Date and adds a nanosecond field). The author of Timestamp

documents the intention of reuse implementation and cautions that Timestamp should not

be substituted for Date.

In addition to these well-known examples, our checker also detects some new instances

of implementation reuse from JDK 1.5. A class MirrorImpl is made the root of a large

inheritance hierarchy in Java Debugging API (com.sun.tools.jdi) just so that all the sub-

classes can have a field to represent the Java virtual machine they are interacting with. A

subclass BuddhistCalendar is derived from GregorianCalendar, but it appears not suitable

to substitute BuddhistCalendar for GregorianCalendar. However, this is not documented.

In contrast, BakedArrayList (sun.swing) is intended for reusing the implementation of Ar-

rayList and the author clearly documented this intention in the code.
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Although it may be possible to infer only from code whether inheritance is used for

implementation reuse or subtyping, the inference is not always straightforward. For ex-

ample, by inspecting the code, we conclude that DefaultCaret is not used as a Rectangle.

But the process of drawing this conclusion is costly, and every future maintainer would

need to repeat the same reasoning to ensure that DefaultCaret is not used as a Rectangle.

The reasoning is not local and needs to be enforced whenever code changes. Thus, making

DefaultCaret a subclass of Rectangle is not a good idea. If implementation reuse is at all

justified, the developer should at least consider explicitly documenting the intent. In gen-

eral, it appears that this documentation practice is performed better in the public API of

JDK than its private part.

public boolean equals(Object o) {
if (o == this) { return true; }
else if (o instanceof IdentityHashMap) {

IdentityHashMap m=(IdentityHashMap) o;
// for each pair of (key, value) in m
// test this.containsMapping(key,value)

} else if (o instanceof Map) {
// use value-based comparison

} else { return false; }
}

// returns true if a pair p exists in this map
// such that p.key==key && p.value==value
private boolean containsMapping(Object key,

Object value) {
...

}
}

Figure 2.1: equals() of IdentityHashMap, which compares key-value pairs with == rather
than equals() (with modificatons).

Map is an important type hierarchy in the Java Collection Framework, with concrete

implementations such as HashMap and TreeMap that differ in implementation strategy, e.g.,

a hash table based map versus a tree-based map. In the Map interface, it is specified that

the equals() method returns true if the given object is also a map and the two maps repre-

sent the same mappings. More formally, two maps t1 and t2 represent the same mappings

if t1.entrySet().equals(t2.entrySet()). This ensures that the equals() method works prop-

erly across different implementations of the Map interface. As a result, a type-compatible

equality is implemented in the abstract class AbstractMap, which is inherited by other maps.

A new class IdentityHashMap added in Java 1.4, however, violates the symmetry prop-
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protected boolean equalsDelegate(Object o) {
if (o.getClass().equals(getClass()){

IdentityHashMap m=(IdentityHashMap) o;
// for each pair of (key, value) in m
// test this.containsMapping(key,value)

}
return false;

}

// returns true if a pair p exists in this map
// such that p.key==key && p.value==value
private boolean containsMapping(Object key,

Object value) {
...

}
}

Figure 2.2: equalsDelegate() for IdentityHashMap as part of implementing a hybrid equality
for the Map hierarchy.

erty of the equals contract, as shown in the following snippet:

Map hMap = new HashMap();

Map ihMap = new IdentityHashMap();

ihMap.put("1", new Integer(1));

hMap.put("1", new Integer(1));

hMap.equals(ihMap); // returns true

ihMap.equals(hMap); // returns false

This loss of symmetry is caused by a change in the behavior of the equals() in Iden-

tityHashMap, which compares keys and values with reference equality (==) rather than

value equality. Thus, hMap.equals(ihMap) returns true because hMap is a HashMap and

uses value equality, but ihMap.equals(hMap); returns false because IdentifyHashMap uses

reference equality to compare pairs between itself and another map. Figure 2.1 depicts the

details of equals() in IdentityHashMap.

At the time of developing IdentityHashMap, clearly this violation was noticed and was

treated as an exception, which is evident by the following comment highlighted in bolded

text in the IdentityHashMap specification:

This class is not a general-purpose Map implementation! While this class implements the

Map interface, it intentionally violates Map’s general contract, which mandates the use of

the equals() method when comparing objects. This class is designed for use only in the rare

cases wherein reference-equality semantics are required.

There can be two possible fixes for this problem, both of which are easy to implement.
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The first solution is to change the Map hierarchy from type-compatible equality to hybrid

equality in the way illustrated in Figure 1.8. This would involve modifying the equals() in

AbstractMap (not shown) and adding equalsDelegate to IdentifyHashMap, which is shown in

Figure 2.2. The second solution would be to move IdentityHashMap out of Map to create an

independent hierarchy. This can be done by copy-and-pasting Map to create a new interface

IdentityMap, and AbstractMap to create a new class AbstractIdenityMap. IdentityHashMap

should be changed to inherit AbstractIdentityMap rather than AbstractMap. The entrySet()

of IdentityHashMap and the equals() of AbstractIdentityMap also need to be modified.

We have implemented a new IdentityHashMap in this way in a few hours. However, a

potential problem with the second solution is that it separates IdentityHashMap from the

Map abstraction, and thus makes it impossible for an IdentityHashMap to participate in

client code written in terms of Map. If this is proven undesirable, the first solution could

still be used instead.

2.2.2 Overloading equals with multiple purposes

The equals() contract as defined in java.lang.Object can support only one specific notion

of equality. Sometimes, a class may need to support additional equality or some kind of

similarity that is not intended to be used by a client such as a collection data type and

even does not have to be an equivalence relation. Intentionally or incidentally, developers

tend to overload the equals() implementation to encode all of them in one place. For ease of

understanding and maintenance, it is advisable to implement separate predicates for such

relations.

For example, the String and StringBuffer classes (java.lang) implement the CharSe-

quence interface and represent a sequence of characters. The difference is that String

is immutable and StringBuffer is mutable. equals() in String will always return false

when compared with a StringBuffer. Since objects from these classes contain character

sequences, it makes sense to test if the content of a String object is the same as that of

a StringBuffer. Instead of piggybacking onto equals(), the String class provides a “con-
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tentEquals(StringBuffer)” method for this purpose, which is not symmetric with respect to

StringBuffer.

The Arg class represents an argument on the stack (com.sun.org.apache.xpath.internal).

Among other fields, an Arg has a qualified name QName (com.sun.org.apache.xml.internal.utils).

public class Arg {
private QName m_qname;

public boolean equals(Object obj) {
if (obj instanceof Qname)

{return m_qname.equals(obj);}
else return super.equals(obj);

}
... // Remainder omitted

}

equals() in Arg directly checks for the type of obj (obj instanceof QName) and com-

pares it with m qname. Note that QName does not belong to the type hierarchy of Arg.

Furthermore, if obj is not of type QName (including objects of Arg class), equals() will

perform a reference equality check. Though the equals() method of Arg checks for QName,

equals() in QName does not check for Arg, which means a loss of symmetry between the

two classes. Thus, the equals() definition is probably intended to serve as a similarity check,

and a better solution would be to remove the equals() method from the Arg class (in which

case it will inherit Object’s equals()) and add a new method as follows:

public boolean hasName(QName qName) {
return m_qname.equals(qName);

}

There are several ways to detect such cases of piggybacking on equals(). A particularly

useful means is to detect the presence of multiple instanceof type testing. Our experience is

that most equals() implementations contain only one instanceof. Therefore, when an equals()

contains more than one instanceof testing, it is more likely that the equals() predicate is

overloaded to carry another notion of ‘similarity’. A checker was written to detect the

presence of multiple instanceof and 15 such cases were found in JDK 1.5. We inspected all

of them and concluded that 9 of them are true positives and 6 false positives.
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The AlgorithmId class in sun.security.x509 represents algorithms such as cryptographic

transformations. Its equals(), as shown below, clearly overloads itself to carry both an

equality check and a similarity check with ObjectIdentifier in sun.security.util.

A similar case occurs between the Oid class in org.ietf.jgss and ObjectIdentifier.

public boolean equals(Object other) {
if (this == other) {

return true; }
if (other instanceof AlgorithmId) {

return equals((AlgorithmId) other);

} else if (other instanceof ObjectIdentifier) {
return equals((ObjectIdentifier) other);

} else {
return false;}

}

Two classes GroupImpl and NetmaskImpl (com.sun.jmx.snmp.IPAcl) in the java.security

.Principal hierarchy mistakenly encode a partial order similarity between 2 subnet masks

in the equals() predicates (255.255.255.0 is ‘equal’ to 255.255.0.0 but not vice versa).

The XObject hierarchy in com.sun.org.apache.xpath.internal.objects shows that the de-

veloper is not clear about how to implement a sophisticated equality, under which, for

example, a string (XString) that represents a number would be considered equal to another

object that represents a true number. The strategy appears to be for XString.equals() to

invoke equals(Object) from 2 other classes. Because only XString overrides equals(Object),

and all the other classes in the hierarchy implement equals(XObject) instead, we conclude

that the overriding of equals() in XString is incidental and that it is not intended to conform

to the contract of java.lang.Object.equals().

2.2.3 Suspicious implementations of type-incompatible equality

The most common pattern found in JDK is probably implementing a type-incompatible

equality by using an instanceof test in both a supertype and a subtype. In the example

shown in Figure 2.3, NTSid represents a Security Identifier for Windows NT OS, which

has 4 concrete subclasses that model a user, a domain, a group, and a primary group,
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respectively. These are principals that can be attached to a subject such as a person to

grant the subject a certain permission.

// implementation of NTSid
public boolean equals(Object o) {

if (o == null) return false;
if (this == o) return true;

if (!(o instanceof NTSid))
return false;

NTSid that = (NTSid)o;

if (sid.equals(that.sid)) {
return true;

}
return false;

}

// implementation of NTSidUserPrincinpal
public boolean equals(Object o) {

if (o == null) return false;
if (this == o) return true;

if (!(o instanceof NTSidUserPrincipal))
return false;

return super.equals(o);
}

Figure 2.3: A common mistake of using instanceof to implement type-incompatible equality
in a supertype (NTSid) and a subtype (NTSidUserPrincinpal).

Because NTSid and its subclasses are logically distinct objects, a type-incompatible

equality should be implemented for this type hierarchy. Unfortunately, the solution pre-

sented in Figure 2.3 is suspicious as it breaks the symmetry property between NTSid and

its subclasses. Fortunately, this can be fixed with the type-incompatible implementation

shown in Figure 1.5. Another possibility is that NTSid is not intended to be instantiated.

If that is the case, then at least it could have been made an abstract class. Furthermore,

its equals() can be removed to make it clear that a type-incompatible equality is intended

for this hierarchy.

Table 2.3 shows other similar cases we found from JDK 1.5. Note that these are all type

hierarchies and a much larger number of classes are involved.

2.2.4 Suspicious implementations of type-compatible equality

When a type hierarchy is implemented by multiple developers, it can be easy for some to

forget about the programming disciplines.
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package root class
com.sun.java cup.internal lr item core
com.sun.jndi.ldap ClientId
com.sun.security.auth NTSid
java.beans PropertyDescriptor
java.security CodeSource
javax.management MBeanFeatureInfo
javax.management MBeanInfo
javax.imageio ImageTypeSpecifier
com.sun.jmx.snmp.IPAcl PermissionImpl
java.awt.image ColorModel

Table 2.3: Class hierarchies in JDK 1.5 that implement type-incompatible equality with
instanceof.

The Map interface defines a map entry (key-value pair) to model mapping from a key to

a value. Formally, two entries e1 and e2 represent the same mapping if the following holds:

(e1.getKey()==null ?

e2.getKey()==null:

e1.getKey().equals(e2.getKey())) &&

(e1.getValue()==null ?

e2.getValue()==null:

e1.getValue().equals(e2.getValue()))

This ensures that equals() works properly across implementations of the Map.Entry inter-

face.

Figure 2.4 shows both a good implementation of equals() in Hashtable’s map entry, which

accepts Map.Entry, and an inappropriate implementation in java.text.AttributeString, which

accepts only AttributeEntry. Another inappropriate implementation of map entry can be

found in ParserImplTableBase (com.sun.corba.se.spi.orb). Clearly, these developers either

do not know or forget to follow the right pattern in Figure 2.4. Although it is not certain

whether the inappropriate type casting would lead to a problem, it would be a good idea

to conform to the standard implementation shown in Hashtable.
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// implementation in java.util.Hashtable
public boolean equals(Object o) {

if (!(o instanceof Map.Entry))
return false;

Map.Entry e = (Map.Entry)o;

return (key==null ? e.getKey()==null :
key.equals(e.getKey())) &&
(value==null ? e.getValue()==null :
value.equals(e.getValue()));

}

// implementation in java.text.AttributeEntry
public boolean equals(Object o) {

if (!(o instanceof AttributeEntry)) {
return false;

}
AttributeEntry other = (AttributeEntry) o;
return other.key.equals(key) &&
(value == null ? other.value == null :
other.value.equals(value));

}

Figure 2.4: A mistake of type testing the wrong type when implementing type-compatible
equality.

2.2.5 Hybrid equality

Initially, the Map type hierarchy is designed to have a type-compatible equality. An abstract

class java.util.AbstractMap provides the skeleton implementation for most of the operations

specified in the Map interface, including the equals() method. AbstractMap is then extended

by other maps.

However, not all subclasses are type-compatible with AbstractMap. For example, the

Java Debugging API (com.sun.tools.jdi) defines a LinkedHashMap whose equals() requires

its parameter to be the same type by an instanceof testing. It is also noticed that this class

is very similar to a same named class in java.util, which inherits equals from AbstractMap.

Thus it seems reasonable to conclude that the jdi LinkedHashMap is intended to be type-

incompatible with AbstractMap. Two other similar cases are RenderingHints (java.awt) and

TabularDataSupport (javax.management.openmbean), which implement Map and should be

type-incompatible with other maps due to domain semantics. Again, these two classes

also use instanceof to implement type-incompatible equality, which can be better done by

following the implementation shown in Figure 1.8.

The List hierarchy has similar subclasses that are intended to be type-incompatible. For

example, com.sun.corba.se.impl.ior defines a list called FreezableList that is intended to be
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type-incompatible with other lists. Another class BakedArrayList from sun.swing is also

type-incompatible, which specializes ArrayList for better performance. Although its author

documents that BakedArrayList is for local use only and thus its equals() implementation is

good enough, changing the List hierarchy into hybrid equality would make this class exhibit

the general equals() behavior, which will ease future maintenance since the general behavior

can always be assumed and one does not have to worry whether objects of this class are

compared with other general lists.

2.2.6 Evolution of type hierarchy

When a type hierarchy is evolved, it needs to be revisited to ensure that the right equality

is implemented properly.

The state of Rectangle2D (java.awt.geom) can be specified by 4 methods (getX(), getY(),

getWidth(), getHeight()), all return double. The Rectangle class (java.awt) is a subclass of

Rectangle2D that uses int as its representation. (There are several other subclasses using

other representations like float and double.) In theory, a type-compatible equality can be

implemented for this type hierarchy by defining an equals() in Rectangle2D. However, as

shown in Figure 2.5, Rectangle also defines an equals() in addition to that of its superclass

Rectangle2D.

The implementation of equals() in Rectangle is redundant and can be removed. By

inspecting the code for Rectangle in JDK 1.0, we found that Rectangle exists before Rect-

angle2D (added in JDK 1.2). After the Rectangle2D class was introduced in JDK 1.2,

Rectangle was retrofitted to extend Rectangle2D. As a result, methods like getX() was

added to Rectangle. Furthermore, as a quick fix, most of the original equals() was kept and

a super.equals() call was added.

A similar case happens between java.awt.geom.Point2D and java.awt.Point.

A notable pattern in the evolution of type hierarchy is to specialize a general class for

local use. The local use may relax from the subclass some of the restrictions put on the

general class. For example, it may be guaranteed that ‘the subclass may never interact
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public abstract class Rectangle2D
extends RectangularShape {
/** ... @since 1.2 */
public boolean equals(Object obj) {
if(obj == this) { return true; }
if (obj instanceof Rectangle2D) {
Rectangle2D r2d=(Rectangle2D)obj;
return((getX() == r2d.getX()) &&
(getY() == r2d.getY()) &&
(getWidth() == r2d.getWidth()) &&
(getHeight() == r2d.getHeight()));

}
return false;

}
... // Remainder omitted

}

/** ... @since JDK1.0 */
public class Rectangle extends Rectangle2D
implements Shape, Serializable {
public int x;
public double getX() { return x; }
... // Remainder getters omitted
public boolean equals(Object obj) {
if (obj instanceof Rectangle) {
Rectangle r = (Rectangle)obj;
return ((x == r.x) && (y == r.y) &&
(width == r.width) && (height == r.height));

}
return super.equals(obj);

}
... // Remainder omitted

}

Figure 2.5: equals() in Rectangle2D and Rectangle.

with other general classes in the same hierarchy’. However, because the truth of such

properties depends on the context of use, it can be costly to enforce. If such local properties

are desired, they should at least be documented, as they were in java.sql.Timestamp and

sun.swing.BakedArrayList.

2.2.7 Implementation variations

In this section, common ways of implementing equals() are summarized and evaluated,

particularly, calling super.equals() and type testing operations, and advice is given for their

use.

We suggest to avoid calling super.equals() in the equals() method unless absolutely

necessary. For each class in a hierarchy, define its state first, including those inherited from

its superclasses, and implement equals() in terms of the state independent of any superclass.

In this way, it becomes easier to understand equals as everything it depends on is presented
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in a single location. Furthermore, a subclass gains the maximum independence from the

superclass because equals depends on state instead of representation. Of course, this would

imply that more code needs to be typed, especially for deep class hierarchies. But our

experience is that most equals() are short.

To understand how super.equals() is called in practice, a checker was developed and

98 classes in JDK 1.5 are detected whose equals() call super.equals(). 72 out of 98 are for

implementation reuse, most of which could be changed to follow the above advice easily.

11 out of 98 end up calling Object.equals(), and thus are redundant. In the example that

follows, the super call should be replaced with false.

class Point2D { // java.awt.geom

...

public boolean equals(Object obj) {
if (obj instanceof Point2D) {

Point2D p2d = (Point2D) obj;

return (getX() == p2d.getX()) &&

(getY() == p2d.getY());

}
return super.equals(obj);

}

However, there is one special case where a superclass makes all its instance variables

private but does not define accessors. In such cases, super.equals() would be justified.

Finally, 5 out of 98 super calls are used in a subclass whose equals() is semantically equivalent

to that of the superclass but differs in performance or the representation used. For example,

EnumMap is a map whose keys are enum. It provides a specialized implementation for

equals() using its own representation. When the incoming argument is not EnumMap, the

superclass’ equals() is called. This represents another condition where super.equals() is

justified in a subclass.

Table 2.4 depicts the use of various type testing operations in the 4 projects. instanceof

as a type checking mechanism is more popular than others such as getClass(), Type.class and

try-catch. The use of the instanceof operator seems to be the norm for equals() implemen-
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JDK Lucene BCEL SCL
instanceof 496 32 13 9
getClass 26 5 0 5
Type.class 0 2 0 0
try-catch 37 1 0 0
none 65 0 7 1
multiple testing 15 0 0 0

Table 2.4: Use of type testing in equals().

tation for most projects. This would explain why there are so many violations of symmetry

when instanceof is used to implement type-incompatible equality between a supertype and

a subtype (Section 2.2.3), where getClass() should have been used instead.

2.2.8 Other design considerations

Two implementation details of equals() need to be considered. One is that before derefer-

encing the incoming parameter, it should be checked not to be null. The other is before

casting the parameter, it must be tested that it can indeed be cast to the given target type.

Using two checkers, we were able to conclude for JDK 1.5 26 cases of possible null pointer

dereferencing and 30 cases of inappropriate type casting that may result in an exception.

Consider equals() of SegmentInfo (org.apache.lucene.index ).

public boolean equals(Object obj) {
SegmentInfo other;

try{ other = (SegmentInfo) obj;}
catch(ClassCastException cce){return false;}
return other.dir==dir&&other.name.equals(name);

}

This equals() checks for ClassCastException but fails to check for a null value of parameter

obj. Thus it may throw a NullPointerException. The author of this class may be relying on

a local assumption that obj is never null, but since the cost of proper implementation is so

little, it would be worthwhile to fix it so that one does not have to rely on this assumption.

The org.apache.bcel.classfile.Field class from the BCEL project is shown in Figure 2.6.

Method equals(Object, Object) in the comparator does not check for the type of o1 and o2

before casting, and thus may throw ClassCastException. Furthermore, it also dereference
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public final class Field extends FieldOrMethod{
private static BCELComparator _cmp =

new BCELComparator() {
public boolean equals(Object o1,Object o2){
Field THIS = (Field) o1;
Field THAT = (Field) o2;
return THIS.getName().equals(THAT.getName())
&&THIS.getSignat().equals(THAT.getSignat());

}
... // Remainder of BCELComparator omitted

};
public boolean equals( Object obj ) {

return _cmp.equals(this, obj);
}
... // Remainder of Field class omitted

}

Figure 2.6: equals() of Field class.

THIS and THAT without checking for null, and thus may result in NullPointerException.

Again, the author may rely on a local assumption that o1 and o2 are of the right type, but

since the cost of proper implementation is so little, it would be worthwhile to fix it so that

one does not have to rely on this assumption.

As a final example, consider equals() shown below (com.sun.org.apache.xalan.internal

.xsltc.compiler.FunctionCall.JavaType):

static class JavaType {
public Class type;

public int distance;

public JavaType(Class type, int distance){
this.type = type;

this.distance = distance;

}
public boolean equals(Object query){

return query.equals(type);

}
}

Objects of this class are used as a value in a Map and are compared with objects of Class

directly using aJavaType.equals(aClassObject) This solution works correctly with the cur-

rent Map implementation. But again, this use is local and it relies on the assumption that

Map compares two objects with JavaType as a receiver object, which would be an extra

burden for a future maintainer to ensure.
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2.3 Equals Implementation Guidelines

Based on the analysis in Section 1.3 and the case study in Section 2.1, we recommend

the following guidelines for designing, implementing, and evolving equals(). The correct

implementation of equals() requires proper identification of object state and designing the

right type hierarchies. In this respect, our design guidelines for equals() are consistent with

established principles for designing type hierarchy [30, 31]. But our guidelines are also

equals-specific and require the developer to apply the right implementation strategy.

1. Identify state for each class in a hierarchy.

2. Use inheritance for subtyping rather than implementation reuse. If implementation

reuse is used for a good reason and cannot be avoided, document it.

3. Decide the right equality that is needed for an inheritance hierarchy (type-compatible,

type-incompatible, or hybrid equality) and use the corresponding implementation pat-

tern.

4. Avoid piggybacking on equals() to implement relations other than equality. Add other

predicates instead.

5. Minimize the dependency on superclass. Consider implementing equals() in terms of

state (e.g., accessors) rather than internal representation. Avoid calling super.equals()

whenever possible.

6. Minimize implementation variations. For example, avoid using exception handling to

test object types.

7. Avoid the possibility of NullPointerException and ClassCastException by following

the proper implementation. Avoid relying on local assumptions since it is easy to

provide a reliable implementation.

8. When an inheritance hierarchy is changed, reconsider all of the above.
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9. Keep in mind that Java’s design can support only one equality. When more than one

equality is needed, consider other design options in addition to equals().
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Chapter 3

Static Checker for Analysis of

Object Equality

3.1 Introduction

The preliminary case study from Chapter 2 convinced us that the equals method is not as

simple as it looks and it is very easy to get it wrong. We felt a need for a static analysis

tool that can properly identify the problems reported in Chapter 2. We looked at the

FindBug [43] tool and found that the tool focuses more on a call to the equals method

rather than its implementation. Out of 36 equals related problems reported by the tool,

we found only 4 categories of problems that deal with equivalence property violation in the

implementation of the equals method. Among these only one category deals with equals

implementation with respect to a type hierarchy. However, none of these categories properly

address the violation of equivalence relation in the implementation of the equals method.

Other available static checkers do very little with the equals implementation1. A presence of

many equivalence related problems and modern day checkers not properly addressing these

issues motivated us to design our own checker. Furthermore, we want the checker to be able

to detect reflexive, symmetric and transitive property violation based on the semantics of
1This is further discussed in Section 5.4.
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Eclipse Project Containing
Java Class Files

Eclipse JDT
Searches for Class with equals

SOOT Loading
Intra-Procedure CFG

Inter-Procedure CF Paths

Path Based Error Analysis /
Alloy Code Generation

Alloy Code Analysis /
Error Reporting

Figure 3.1: The context diagram of equals checker.

the code through logical abstraction rather than just through the analysis of the program

syntax and structure.

3.2 Checker Architecture

The equals checker is a path-based analysis tool designed as an Eclipse [17] plugin. It works

on a set of control flow paths generated for an equals method. This process is accompanied

with a different kind of path filtering analysis for efficiency as well as for low level error

detection. It then tries to find different kinds of code patterns in these paths that are

then translated as constructs of the first order logic language (Alloy [26, 27]). This process

abstracts out implementation details of Java code and provides a general mechanism for

imposing high level logical constraints on the implementation of the equals method. The

high level constraints for the equals method in this case are the reflexive, symmetric and

transitive property of the equivalence relation discussed in Section 1.1.

The checker requires three different frameworks to achieve translation of Java to the

Alloy code and execution of Alloy model for constrain checking. These frameworks are as

follows:

• Eclipse’s Java Development Tool

• Soot

• Alloy

Figure 3.1 shows the context diagram of the checker and its components. Eclipse’s Java
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Development Tools (JDT) [16] is used for searching all of the classes that override the equals

method of java.lang.Object in a project. Type hierarchies are then computed with the help

of JDT that involve these classes. All of the classes in these type hierarchies are then loaded

to Soot [44] that translates the byte code of these classes into a three address stack-less

code called Jimple. A control flow graph (CFG) built on top of Jimple is then used for

Path generation. The CFG returned by Soot for an equals method is intra-procedural, i.e.

it does not expand any method call within the body of the equals method. Hence, we had

to develop our own library on top of Soot for Inter-procedural path generation and path

based context-sensitive flow-sensitive analysis. We used a modified version version of Class

Hierarchy Analysis (CHA) [14] for type resolution of the target object at the call site to

process expansion of intermediate method calls and extract relevant control flow paths. All

of the redundant paths are pruned while processing path generation. The generated paths

are then passed to a code generator for Jimple-based low level error checking as well as

for Alloy code generation. The generated Alloy code serves as an abstract model of Java

code that can be analyzed by Alloy analyzer for checking higher level logical constraints like

reflexive, symmetric and transitive properties of the equals method. Any error discovered

is then reported to the user using the Eclipse GUI.

3.3 SERL Control Flow Framework

SERL (Software Engineering Research Laboratory) Control Flow Framework built on top

of Soot provides three major functionalities:

• Path generation

• Path, context and flow sensitivities in an analysis

• Code pattern detection
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3.4 Path Generation

Path generation for a method is done using its flow graph called ExceptionalUnitGraph

returned from Soot. The algorithm at first generates a set of intra-procedure paths that do

not expand method calls. It then iterates through all of the statements in the generated

set of paths looking for a method call. Each method call is then expanded to get a new set

of intra-procedure paths. All of the newly generated paths are appropriately in lined with

previously existing paths. After all of the method calls in the path set are expanded, the

final set of paths are now inter-procedure paths whose method calls are expanded wherever

needed.

3.4.1 Intra-procedure Path Generation

The algorithm (Figure 3.2) for intra-procedure path generation uses breadth first search

for traversing nodes in a control flow graph. The algorithm takes a directed flow graph

G = (V,E) as input and outputs a set of paths S containing a list of vertices. The algorithm

assumes that the graph has one entry vertex, may have multiple exit vertices and may

contain cycles.

Let us apply the algorithm to a Java code snippet with loops (cycles) shown in Figure 3.3

whose flow graph is shown in Figure 3.4. Before the first loop starts Q has the {0} node in

it and S also has one path with the 0 node in it {[0]}. Inside the first loop n = 0, Q = {},

W = [0], O = [0] and s = [1] (since successors(0) = [1]). The condition i == 0 is satisfied

and the algorithm iterates through all of the available paths, in this case just one p = [0].

It checks for duplicate node 1 in [0] resulting in c = 0. So, condition c <= 1 is satisfied and

1 is appended to path [0], making it [0,1]. 1 is also added to Q which now becomes {1}.

In the second iteration, n = 1, Q = {}, W = {[0,1]}, O = {[0,1]} and s = [7,2]. The

condition i = 0 is satisfied for s[0] = 7, and the algorithm proceeds like it did in the first

iteration resulting in S = {[0,1,7]}. However, for s[1] = 2, i == 0 is not satisfied and the

else block is executed. There is no duplicate node 2 in O = {[0,1]}, so, c <= 1 is satisfied.

Node 2 is appended to a mutable clone of p = [0,1] and the clone is added to S. At the
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S IntraProcedurePathGenerator(G) {
Q = {} // An empty queue that does not allow duplicate entries
S = {} // An empty path set
t = [] // An empty list of graph nodes

r = root node of G
add r to t // Add root node to empty path
add t to S // Add first path to the path set

add r to Q // Add root node to the queue
while(Q is not empty) {
n = poll Q
W = set of paths ending with n; // Mutable working copy of intermediate paths
O = clone W; // Immutable copy of W
s = successors(n) // List of successors of n
for(i = 0 to length(s) - 1) {
if(i == 0) {
// For first child use mutable working copy of intermediate paths
// This block does not change the size of S
for(each path p in W) {

c = number of duplicate s[i] in p
if(c <= 1) { // Prevents entering a loop more than two times

append s[i] to p
add s[i] to Q

}
}

}
else {
// For rest of the children, use immutable copy and clone to get a mutable copy
// This block may add a new path to S thus increasing its size by 1
for(each path p in O) {

c = number of duplicate s[i] in p
if(c <= 1) { // Prevents entering a loop more than two times

d = clone p // Get mutable clone of p
append s[i] to d
add d to S
add s[i] to Q

}
}

}
}

}

// Remove paths from S whose last node is not a return/exit node
for(each path p in S) {
l = last node of p
if(l has non empty successors) {

remove p from S
}

}
return S

}

Figure 3.2: Intra-procedure path generation algorithm.
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public static int sampleMethod() {
0 int i = 0;
1 while(i < 5) {
2 int j = 2 * i;
3 while(j < 20) {
4 if(j == 4) break;
5 j = j + i;

}
6 i = i + 1;

}
7 return i;
}

Figure 3.3: A Java code snippet showing loops and inner loops.

0

1

2

3

4

56

7

Figure 3.4: Flow graph corresponding to code snippet shown in Figure 3.3.

end of the second iteration S = {[0,1,7], [0,1,2]} and Q = {7,2}. When condition i == 0

is satisfied, the size of S is not changed, only the corresponding path is updated, however,

when i == 0 is not satisfied a new path is added to S, thus increasing the size of S by 1.

In the third iteration, n = 7 which is the return node and does not have a successor, so,

nothing is changed except Q = {2}. In the fourth iteration, we will get the following Q and

S:

Q: {3}
--------------------------------------------------------

1: 0 1 7

--------------------------------------------------------

2: 0 1 2 3 (Updated)

In the fifth iteration, we will add another path as follows:

Q: {6 4}
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--------------------------------------------------------

1: 0 1 7

--------------------------------------------------------

2: 0 1 2 3 6 (Updated)

--------------------------------------------------------

3: 0 1 2 3 4 (Added)

The algorithm proceeds in a similar way until the 13th iteration where we have the following
Q and S:

Q: {6 4 7 2}
--------------------------------------------------------

1: 0 1 7

--------------------------------------------------------

2: 0 1 2 3 6 1 7

--------------------------------------------------------

3: 0 1 2 3 4 5 3 6 *

--------------------------------------------------------

4: 0 1 2 3 4 6 1 7

--------------------------------------------------------

5: 0 1 2 3 6 1 2 3 6 *

--------------------------------------------------------

6: 0 1 2 3 4 5 3 4

--------------------------------------------------------

7: 0 1 2 3 6 1 2 3 4

--------------------------------------------------------

8: 0 1 2 3 4 6 1 2

In the 14th iteration, n = 6 and s = [1] and W = {[0,1,2,3,4,5,3,6], [0,1,2,3,6,1,2,3,6]}
(containing two paths ending with 6, i.e. paths 3 and 5 in S of the 13th iteration). While
calculating duplicate successor 1 in path [0,1,2,3,4,5,3,6], count = 1 (<= 1) and the path is
updated but for path [0,1,2,3,6,1,2,3,6] count = 2 (> 1), hence this path is ignored. This
duplicate check prevents control from processing the same node more than two times in a
path. And not adding these nodes in the queue makes the algorithm stop in a finite time.
The following modification happens to Q and S after the 14th iteration:

Q: 4 7 2 1

--------------------------------------------------------

3: 0 1 2 3 4 5 3 6 1 (Updated)

--------------------------------------------------------

5: 0 1 2 3 6 1 2 3 6 (Ignored)

--------------------------------------------------------

Q becomes empty in the 30th iteration generating following set of paths:
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Q: {}
--------------------------------------------------------

1: 0 1 7

--------------------------------------------------------

2: 0 1 2 3 6 1 7

--------------------------------------------------------

3: 0 1 2 3 4 5 3 6 1 7

--------------------------------------------------------

4: 0 1 2 3 4 6 1 7

--------------------------------------------------------

5: 0 1 2 3 6 1 2 3 6 (will be pruned)

--------------------------------------------------------

6: 0 1 2 3 4 5 3 4 5 (will be pruned)

--------------------------------------------------------

7: 0 1 2 3 6 1 2 3 4 5 (will be pruned)

--------------------------------------------------------

8: 0 1 2 3 4 6 1 2 3 6 (will be pruned)

--------------------------------------------------------

9: 0 1 2 3 4 5 3 4 6 1 7

--------------------------------------------------------

10: 0 1 2 3 6 1 2 3 4 6 (will be pruned)

--------------------------------------------------------

11: 0 1 2 3 4 5 3 6 1 2 (will be pruned)

--------------------------------------------------------

12: 0 1 2 3 4 6 1 2 3 4 5 (will be pruned)

--------------------------------------------------------

13: 0 1 2 3 4 5 3 4 6 1 2 (will be pruned)

--------------------------------------------------------

14: 0 1 2 3 4 6 1 2 3 4 6 (will be pruned)

Note that there are some intermediate paths that were not processed due to existing

duplicate entries in them. The algorithm removes all of these intermediate paths that do

not end at return nodes (node 7 in this case), resulting in the following final set of intra-

procedure paths:

1: 0 1 7

--------------------------------------------------------

2: 0 1 2 3 6 1 7

--------------------------------------------------------

3: 0 1 2 3 4 5 3 6 1 7

--------------------------------------------------------
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4: 0 1 2 3 4 6 1 7

--------------------------------------------------------

5: 0 1 2 3 4 5 3 4 6 1 7

As we can see in the final set of paths, a loop is converted into two paths, one that does

not go inside the loop when the loop condition is unsatisfied (e.g. path 1) and another when

the loop condition is satisfied (e.g. path 2). After generating intra-procedure paths, inter-

procedure paths that expands intermediate method calls are generated. This is discussed

in the following section.

3.4.2 Inter-procedure Path Generation

The Inter-procedure path generation algorithm is essentially a work list algorithm. It uses

the algorithm from intra-procedure path generation (Figure 3.2) to get a first set of paths

and iterates through the statements of these paths, expanding methods intra-procedurally

and in-lining with the existing paths until all of the method calls are selectively expanded.

Note that we run several analyses on the intermediate paths to determine if a method needs

to be expanded (Section 3.4.3) and expand only those that need to be expanded.

All of this functionality is based upon the Jimple representation of Java code. To get a

little understanding of Java to Jimple code transformation, lets look at the equals method

of a Point class shown in Figure 3.5. Line 1 and 2 are field declarations. Line 3 serves as

a method header for the equals method which takes a parameter of type java.lang.Object

and returns a boolean value. Line 4 invokes the typeCheck method defined in line 9 that

performs instanceof type checking and returns true if o is of type Point or its subtypes.

Line 6 does Object to Point type casting and line 7 returns the result of comparison of x

and y states of this and o objects.

The transformation of Point’s equals method to Jimple is shown in Figure 3.6. Since

Jimple is a stack-less representation of bytecode, all of the variables used in the equals

method are declared locals including the this reference. Line 1 assigns the this reference

of the Point class to a local variable r0. Line 2 assigns parameter o to r1. Line 3 assigns

the result of this.typeCheck(o) to z0. Line 4 compares the value of z0 not to be false (i.e.
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public class Point {
1 private int x;
2 private int y;

3 public boolean equals(Object o) {
4 if(!this.typeCheck(o))
5 return false;
6 Point that = (Point) o;
7 return this.x == that.x && this.y == that.y;
8 }

9 public boolean typeCheck(Object o) {
10 if(o instanceof Point)
11 return true;
12 return false;
13 }
}

Figure 3.5: Point Class containing equals method.

true), in which case, goto statement will result in line 6 to be executed that does type

casting of Object o to Point that and stores in r2 local. If the result of the comparison is

false then return false of line 5 will be executed. Line 7 and 8 assign the field x of this and

that to i0 and i1 respectively. Line 9 compares this.x and that.x, if they are not equal, line

14 will be executed and the program will terminate with return false. If the comparison

evaluates to true then line 10 will be executed where i2 and i3 are assigned this.y and that.y

respectively. Line 12 does the comparison of this.y and that.y. If they are not equal then

return o of line 14 will be executed otherwise return true of line 12 will be executed. The

information of control flow is represented by a data structure called ExceptionalUnitGraph

of Soot that is used for path generation. The internal workings of Soot and details of Jimple

representation is out of the scope of this work but can be found in [44].

1 r0 := @this: serl.test.Point
2 r1 := @parameter0: java.lang.Object
3 $z0 = virtualinvoke r0.<serl.test.Point: boolean typeCheck(java.lang.Object)>(r1)
4 if $z0 != 0 goto r2 = (serl.test.Point) r1
5 return 0
6 r2 = (serl.test.Point) r1
7 $i0 = r0.<serl.test.Point: int x>
8 $i1 = r2.<serl.test.Point: int x>
9 if $i0 != $i1 goto return 0
10 $i2 = r0.<serl.test.Point: int y>
11 $i3 = r2.<serl.test.Point: int y>
12 if $i2 != $i3 goto return 0
13 return 1
14 return 0

Figure 3.6: Java to Jimple Transformation of equals method.
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The call site at line 3 of Figure 3.6, is not expanded by Soot. The SERL framework

provides mechanism for expansion of such intermediate method calls within the context of

the analysis method(in our case equals) per path basis.

The algorithm for inter-procedure path generation is shown in Figure 3.7. The input to

the algorithm is a directed flow graph G = (V,E) and set of path filters F that has logic for

pruning paths and returns a set of paths S where each path contains a list of PathNodes2.

Let us go through this algorithm for the equals method shown in Figure 3.6. A call

to IntraProcedurePathGenerator(G) of Figure 3.2 results in four paths: a first path that

returns false for invalid typeCheck (Figure 3.8), a second and third path that return false

for unequal x (Figure 3.9) and y (Figure 3.10) respectively, and a fourth path that returns

true for equal x and y (Figure 3.11).

SERL framework has modules for context sensitive path-based flow analysis that can

be run over these paths. Three specific analyses have been developed for the equals checker

for path filtering: BooleanFilter, NullnessFilter and TypeAnalysisFilter. BooleanFilter per-

forms copy propagation and constant folding for boolean values followed by dead code

elimination and pruning of paths returning false. NullnessFilter performs copy propagation

and constant (null constant) folding for reference values followed by dead code elimination.

TypeAnalysisFilter accumulates type information for local variables and filters paths con-

taining dead code corresponding to non-posible type checking. For the equals method only

paths returning true are considered because anything not true is false in logic and as a good

approximation of the code, false paths are pruned. This approach significantly reduces the

number of paths and helps to avoid path explosion in lengthy equals methods with several

control flow branches. BooleanPathF ilter, in this case, will prune paths in Figure 3.8, 3.9

and 3.10 resulting in only one path (Figure 3.11) for further processing.

The algorithm now proceeds to finds a call site (typeCheck method) at line number 3

of Figure 3.11. The Point class, in our example, does not have a subclass, so the class

hierarchy analysis results in only Point as a target class for this reference. The Jimple code
2A PathNode decorates each vertex(a Jimple statement) with a context object.
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S InterProcedurePathGenerator(G, F) {
Q = [] // An empty queue of Paths
S = {} // Set of final Paths
P = IntraProcedurePathGenerator(G)
nP = JimpleStatementsToPathNodes(P)
fP = apply F to nP // Filter newly generated paths if possible

// Create work list by adding paths to Q
for(each p in fP) {
add p to Q

} // End For
while(Q is not empty) {
p = poll Q
flag = 0 // a flag denoting whether a node of p is expanded or not
i = 0 // Sentinel for PathNode of Path p
while(i < length(p) && flag == 0 ) {

if(p[i] contains call site and method needs to be expanded) {
flag = 1
// CHA is used for resolving method call to possible target methods
M = set of target methods resolved for call site at p[i]
for(each m in M) {

mG = flowgraph(m) // ExceptionUnitGraph returned from Soot
mP = IntraProcedurePathGenerator(mG)
mNP = JimpleSatementToPathNodes(mP)
// Inline newly produced paths to the clone of existing path
for(each path mp in mNP) {

cp = clone p

// Make call site appear before and after the in lining to denote
// method entry and method return points in a path
cp[i + length(mp) + 1] = clone cp[i]

// Move previously existing nodes down by length(mp) and inline new path
for(j = 0 to length(mp)) {
cp[i + j + length(mp) + 2] = cp[i + j + 1]
cp[i+j + 1] = mp[j]

} // End For
// Add cp to queue for further processing
fCP = apply F to cp
if(fCP is not empty) { // Meaning filter F did not prune path cp
add cp to Q

} // End If
} // End For

} // End For
i = i + 1

} // End If
} // End While
if(flag == 0) {

// Meaning p cannot be further expanded so add to the exhausted set of final paths
add p to set S

}
} // End While
return S

}

S JimpleStatmentsToPathNodes(P) {
S = {} // Empty set of paths
for(each path p in set P) {
pn = [] // Empty list of PathNode
for(each Jimple statement s in p) {

// Context c is an object that refers to the origin of method call leading to statement s
c = context of s
n = (s,c) // Decorate Jimple statement s with context c
add n to pn

}
add pn to S

}
return S

}

Figure 3.7: Inter-procedure path generation algorithm.
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r0 := @this: serl.test.Point [ROOT, FALLS THROUGH]
r1 := @parameter0: java.lang.Object [FALLS THROUGH]
$z0 = virtualinvoke r0.<serl.test.Point: boolean typeCheck(java.lang.Object)>(r1) [FALLS THROUGH]
if $z0 != 0 goto r2 = (serl.test.Point) r1 [FALLS THROUGH]
return 0 [END]

Figure 3.8: False returning path due to invalid typeCheck.

r0 := @this: serl.test.Point [ROOT, FALLS THROUGH]
r1 := @parameter0: java.lang.Object [FALLS THROUGH]
$z0 = virtualinvoke r0.<serl.test.Point: boolean typeCheck(java.lang.Object)>(r1) [FALLS THROUGH]
if $z0 != 0 goto r2 = (serl.test.Point) r1 [BRANCHES]
r2 = (serl.test.Point) r1 [FALLS THROUGH]
$i0 = r0.<serl.test.Point: int x> [FALLS THROUGH]
$i1 = r2.<serl.test.Point: int x> [FALLS THROUGH]
if $i0 != $i1 goto return 0 [BRANCHES]
return 0 [END]

Figure 3.9: False returning path due to unequal x.

for the typeCheck method is shown in Figure 3.12. Line 1 and 2 does this and parameter

assignment to r0 and r1 locals respectively. Line 3 assigns the result of instanceof type

checking to z0. Line 4 checks whether instanceof type checking resulted in true in which

case line 5 will be executed else line 6 will be executed. If the Point class had a subtype that

overrode the typeCheck method and instead of the this.typeCheck call, the that.typeCheck

was called, then the class hierarchy analysis would return two targets for the called method

(Point.typeCheck and SubtypeOfPoint.typeCheck) and all of the paths from both methods

Point.typeCheck and SubtypeOfPoint.typeCheck would have been considered for further

processing.

Path generation for Figure 3.12 results in two paths: the first path returns false with

failed type checking (Figure 3.13) and the second path returns true with successful type

r0 := @this: serl.test.Point [ROOT, FALLS THROUGH]
r1 := @parameter0: java.lang.Object [FALLS THROUGH]
$z0 = virtualinvoke r0.<serl.test.Point: boolean typeCheck(java.lang.Object)>(r1) [FALLS THROUGH]
if $z0 != 0 goto r2 = (serl.test.Point) r1 [BRANCHES]
r2 = (serl.test.Point) r1 [FALLS THROUGH]
$i0 = r0.<serl.test.Point: int x> [FALLS THROUGH]
$i1 = r2.<serl.test.Point: int x> [FALLS THROUGH]
if $i0 != $i1 goto return 0 [FALLS THROUGH]
$i2 = r0.<serl.test.Point: int y> [FALLS THROUGH]
$i3 = r2.<serl.test.Point: int y> [FALLS THROUGH]
if $i2 != $i3 goto return 0 [BRANCHES]
return 0 [END]

Figure 3.10: False returning path due to unequal y.
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1 r0 := @this: serl.test.Point [ROOT, FALLS THROUGH]
2 r1 := @parameter0: java.lang.Object [FALLS THROUGH]
3 $z0 = virtualinvoke r0.<serl.test.Point: boolean typeCheck(java.lang.Object)>(r1) [FALLS THROUGH]
4 if $z0 != 0 goto r2 = (serl.test.Point) r1 [BRANCHES]
5 r2 = (serl.test.Point) r1 [FALLS THROUGH]
6 $i0 = r0.<serl.test.Point: int x> [FALLS THROUGH]
7 $i1 = r2.<serl.test.Point: int x> [FALLS THROUGH]
8 if $i0 != $i1 goto return 0 [FALLS THROUGH]
9 $i2 = r0.<serl.test.Point: int y> [FALLS THROUGH]
10 $i3 = r2.<serl.test.Point: int y> [FALLS THROUGH]
11 if $i2 != $i3 goto return 0 [FALLS THROUGH]
12 return 1 [END]

Figure 3.11: True returning path for equal x and y.

1 r0 := @this: serl.test.Point
2 r1 := @parameter0: java.lang.Object
3 $z0 = r1 instanceof serl.test.Point
4 if $z0 == 0 goto return 0
5 return 1
6 return 0

Figure 3.12: Point.typeCheck(Object) method

checking (Figure 3.14). The algorithm proceeds further where it combines newly generated

paths with filtered path. The resulting paths after combination are shown in Figure 3.15

and 3.16. The call site in these paths is replicated to indicate method entry and return

point at line number 3 and 9 respectively of both figures. The path in Figure 3.15 is invalid

because even though the typeCheck method returns false (0 value), the z0 != 0 check at

line number 10 evaluates to true and branches to line number 11. The copy propagation of

BooleanPathFilter detects this conflict and eliminate this path for containing a dead code

block. Any path containing such conflict in boolean value is pruned by BooleanPathFilter

analysis. As a result only one paths returning true of Figure 3.16 is returned by the path

generation module as there is no more method call site to be processed further.

3.4.3 Method Expansion Decision

Optimization is a crucial step in path generation. In absence of a good optimization strategy,

paths for the equals method may escalate exponentially due to deep call graphs. However,

particularly for equals, there is some room for optimization through abstraction. Here are

some rules for optimization:
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r0 := @this: serl.test.Point [ENTRY, FALLS THROUGH]
r1 := @parameter0: java.lang.Object [FALLS THROUGH]
$z0 = r1 instanceof serl.test.Point [FALLS THROUGH]
if $z0 == 0 goto return 0 [BRANCHES]
return 0 [RETURN]

Figure 3.13: Path for failed type checking

r0 := @this: serl.test.Point [ENTRY, FALLS THROUGH]
r1 := @parameter0: java.lang.Object [FALLS THROUGH]
$z0 = r1 instanceof serl.test.Point [FALLS THROUGH]
if $z0 == 0 goto return 0 [FALLS THROUGH]
return 1 [RETURN]

Figure 3.14: Path for successful type checking.

Do not expand methods representing state We run pattern detectors on intermedi-

ate paths to determine the this.getM() == that.getM() pattern that can be translated

as this.m == that.m in Alloy. Hence the abstraction of the getM() method call to the

m field relaxes the need for path expansion of the getM() method.

Do not expand equals or compareTo method on the field We abstract the

this.field.equals(that.field) or the this.field.compareTo(that.field) == 0 pattern as two

fields being compared for equality i.e this.field == that.field. Hence, we do not expand

equals or compareTo method on fields.

Do not expand other methods on the field We do not expand methods on the field

(or a method that does not belong to any type in the type hierarchy of the anal-

ysis class). Our pattern detector in such cases looks for this.field.getState() ==

that.field.getState() or a similar comparison. This is abstracted as this.field state

== that.field state. This way we transfer a state of a composed field to a state of

composing object i.e. this or that.

Do not expand a static method representing state abstraction Sometimes, certain

properties of a field are compared rather than the whole field. This is usually done us-

ing static methods. For instance, an equality logic for two integer fields could be even-

ness or oddness rather than the value of the fields. For instance, Library.isEven(this.field)

== Library.isEven(that.field) is abstracted as this.even field == that.even field and
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1 r0 := @this: serl.test.Point [ROOT, FALLS THROUGH]
2 r1 := @parameter0: java.lang.Object [FALLS THROUGH]
3 $z0 = virtualinvoke r0.<serl.test.Point: boolean typeCheck(java.lang.Object)>(r1) [FALLS THROUGH]
4 r0 := @this: serl.test.Point [ENTRY, FALLS THROUGH]
5 r1 := @parameter0: java.lang.Object [FALLS THROUGH]
6 $z0 = r1 instanceof serl.test.Point [FALLS THROUGH]
7 if $z0 == 0 goto return 0 [FALLS THROUGH]
8 return 0 [RETURN]
9 $z0 = virtualinvoke r0.<serl.test.Point: boolean typeCheck(java.lang.Object)>(r1) [FALLS THROUGH]
10 if $z0 != 0 goto r2 = (serl.test.Point) r1 [BRANCHES]
11 r2 = (serl.test.Point) r1 [FALLS THROUGH]
12 $i0 = r0.<serl.test.Point: int x> [FALLS THROUGH]
13 $i1 = r2.<serl.test.Point: int x> [FALLS THROUGH]
14 if $i0 != $i1 goto return 0 [FALLS THROUGH]
15 $i2 = r0.<serl.test.Point: int y> [FALLS THROUGH]
16 $i3 = r2.<serl.test.Point: int y> [FALLS THROUGH]
17 if $i2 != $i3 goto return 0 [FALLS THROUGH]
18 return 1 [END]

Figure 3.15: Path containing failed type checking.

1 r0 := @this: serl.test.Point [ROOT, FALLS THROUGH]
2 r1 := @parameter0: java.lang.Object [FALLS THROUGH]
3 $z0 = virtualinvoke r0.<serl.test.Point: boolean typeCheck(java.lang.Object)>(r1) [FALLS THROUGH]
4 r0 := @this: serl.test.Point [ENTRY, FALLS THROUGH]
5 r1 := @parameter0: java.lang.Object [FALLS THROUGH]
6 $z0 = r1 instanceof serl.test.Point [FALLS THROUGH]
7 if $z0 == 0 goto return 0 [FALLS THROUGH]
8 return 1 [RETURN]
9 $z0 = virtualinvoke r0.<serl.test.Point: boolean typeCheck(java.lang.Object)>(r1) [FALLS THROUGH]
10 if $z0 != 0 goto r2 = (serl.test.Point) r1 [BRANCHES]
11 r2 = (serl.test.Point) r1 [FALLS THROUGH]
12 $i0 = r0.<serl.test.Point: int x> [FALLS THROUGH]
13 $i1 = r2.<serl.test.Point: int x> [FALLS THROUGH]
14 if $i0 != $i1 goto return 0 [FALLS THROUGH]
15 $i2 = r0.<serl.test.Point: int y> [FALLS THROUGH]
16 $i3 = r2.<serl.test.Point: int y> [FALLS THROUGH]
17 if $i2 != $i3 goto return 0 [FALLS THROUGH]
18 return 1 [END]

Figure 3.16: Path containing successful type checking.

the isEven() method is not expanded.

Using these rules we save on both space and execution time of equals analysis and

Alloy code generation. Furthermore, we need smaller number of pattern detectors for

handing comparison logic thus providing more code coverage. However, if f(this.field) =

f(that.field) ; this.field = that.field for an abstraction function f then such abstraction

is erroneous and goes undetected. Hence, its a compromise between accuracy and efficiency,

and accuracy and code coverage.

47



3.4.4 Loop Treatment

The equals method may not always be as simple as the presented example of the Point class.

It may have logic for array, list or map comparison, thus, introducing loops within its body.

As an approximation, we chose to translate a loop into two non looping paths: one when

the control branches to the loop block when the looping condition is true and the other

when control falls through when the looping condition is false. To illustrate this, let’s look

at the ArrayPattern class of Figure 3.17. Line 3 does type checking, line 6 compares the

length of the arrays, line 8 initializes, checks and increments the index variable for iteration

through the array elements, and line 9 checks for each element in the arrays to be equal. The

path generation algorithm produces two paths returning true. The first path comprises line

3,5,6,8 and 12 in which control does not flow inside the looping block (line 9). The second

path comprises line 3,5,6,8,9 and 12 in which control flows inside the looping block. Jimple

code for the first and second paths are shown in Figure 3.18 and 3.19 respectively. Line 15 of

both figures represents a bound check at line 8 (i < this.array.length) of Figure 3.17. The

first path falls through this check and returns true while the second path branches to the

code block where element comparison is done. The second path repeats the same statement

at line number 15 and 24 where the condition is considered true at 15 (BRANCHES) and

false at line 24 (FALLS THROUGH). Note that we apply a similar approach to recursive

calls where it is just expanded once.

public class ArrayPattern {
1 private int[] array; // Array field
2 public boolean equals(Object o) {
3 if (!(o instanceof ArrayPattern)) // Type check
4 return false;
5 ArrayPattern that = (ArrayPattern) o;
6 if(this.array.length != that.array.length) // Size check
7 return false;
8 for(int i = 0; i < this.array.length; ++i) { // Bound check and iteration
9 if(this.array[i] != that.array[i]) // Element check
10 return false;
11 }
12 return true;
13 }
}

Figure 3.17: Equals method containing loop for array comparison.
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1 r0 := @this: serl.test.ArrayPattern [ROOT, FALLS THROUGH]
2 r1 := @parameter0: java.lang.Object [FALLS THROUGH]
3 $z0 = r1 instanceof serl.test.ArrayPattern [FALLS THROUGH]
4 if $z0 != 0 goto r2 = (serl.test.ArrayPattern) r1 [BRANCHES]
5 r2 = (serl.test.ArrayPattern) r1 [FALLS THROUGH]
6 $r3 = r0.<serl.test.ArrayPattern: int[] array> [FALLS THROUGH]
7 $i1 = lengthof $r3 [FALLS THROUGH]
8 $r4 = r2.<serl.test.ArrayPattern: int[] array> [FALLS THROUGH]
9 $i2 = lengthof $r4 [FALLS THROUGH]
10 if $i1 == $i2 goto i0 = 0 [BRANCHES]
11 i0 = 0 [FALLS THROUGH]
12 goto [?= $r7 = r0.<serl.test.ArrayPattern: int[] array>] [BRANCHES]
13 $r7 = r0.<serl.test.ArrayPattern: int[] array> [FALLS THROUGH]
14 $i5 = lengthof $r7 [FALLS THROUGH]
15 if i0 < $i5 goto $r5 = r0.<serl.test.ArrayPattern: int[] array> [FALLS THROUGH]
16 return 1 [END]
}

Figure 3.18: Path in which control does not flow inside the loop block.

3.5 Path, context and flow sensitivities in an analysis

The SERL Control Flow Framework provides a module that accounts for path, context and

flow sensitivities in an analysis. The analysis is built upon inter-procedural paths that are

traversed statement by statement (Jimple statement) with hooks to several API methods

declared as Java APIs in the framework. To illustrate the difference between this approach

and regular flow analysis [1], let us look at an example for reaching definition analysis:

a simple kind of data-flow analysis that statically evaluates which definition may reach a

given point in the code. Figure 3.20 shows an example where variable x at line 5 has a set

of reaching definitions x = 0 (line 2) and x = 5 (line 4). We have two reaching definitions

at line 5 because of the join of information flowing from two control branches (line 2 and 4)

merging at line 5. Two paths can be constructed from this example; the first path consists

of lines 1,2,5, . . . and the second path consists of lines 1,4,5, . . . . In the context of the first

path x will have value 0 at line 5 and in the context of the second path x will have value 5

at line 5. Path based analysis, in this way, can resolve the ambiguity in the flow analysis

due to merging of control branches.
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1 r0 := @this: serl.test.ArrayPattern [ROOT, FALLS THROUGH]
2 r1 := @parameter0: java.lang.Object [FALLS THROUGH]
3 $z0 = r1 instanceof serl.test.ArrayPattern [FALLS THROUGH]
4 if $z0 != 0 goto r2 = (serl.test.ArrayPattern) r1 [BRANCHES]
5 r2 = (serl.test.ArrayPattern) r1 [FALLS THROUGH]
6 $r3 = r0.<serl.test.ArrayPattern: int[] array> [FALLS THROUGH]
7 $i1 = lengthof $r3 [FALLS THROUGH]
8 $r4 = r2.<serl.test.ArrayPattern: int[] array> [FALLS THROUGH]
9 $i2 = lengthof $r4 [FALLS THROUGH]
10 if $i1 == $i2 goto i0 = 0 [BRANCHES]
11 i0 = 0 [FALLS THROUGH]
12 goto [?= $r7 = r0.<serl.test.ArrayPattern: int[] array>] [BRANCHES]
13 $r7 = r0.<serl.test.ArrayPattern: int[] array> [FALLS THROUGH]
14 $i5 = lengthof $r7 [FALLS THROUGH]
15 if i0 < $i5 goto $r5 = r0.<serl.test.ArrayPattern: int[] array> [BRANCHES]
16 $r5 = r0.<serl.test.ArrayPattern: int[] array> [FALLS THROUGH]
17 $i3 = $r5[i0] [FALLS THROUGH]
18 $r6 = r2.<serl.test.ArrayPattern: int[] array> [FALLS THROUGH]
19 $i4 = $r6[i0] [FALLS THROUGH]
20 if $i3 == $i4 goto i0 = i0 + 1 [BRANCHES]
21 i0 = i0 + 1 [FALLS THROUGH]
22 $r7 = r0.<serl.test.ArrayPattern: int[] array> [FALLS THROUGH]
23 $i5 = lengthof $r7 [FALLS THROUGH]
24 if i0 < $i5 goto $r5 = r0.<serl.test.ArrayPattern: int[] array> [FALLS THROUGH]
25 return 1 [END]

Figure 3.19: Path in which control flows inside the loop block.

1 if(y < 1)
2 x = 0;
3 else
4 x = 5;
5 if(x < 5)
6 ...

Figure 3.20: Reaching Definition Example

3.5.1 Flow Equations for Path Based Approach

Let gen[Si] be the set of definitions generated at statement Si, kill[Si] be the set of def-

initions killed at Si, in[Si] be the set of definitions flowing into Si and out[Si] be the

set of definitions flowing out of Si. For the first statement S1 of a path, equations 3.1

and 3.2 represents the flow of definitions and for Si where i > 1, equations 3.3 and 3.4

represents the flow of definitions in and out of a statement. A path-based approach can

eliminate the need for separate in flow sets because these equations can be reduced to

out[Si] = gen[Si]∪ (out[Si−1]− kill[Si]), thus, reducing the memory needed for the analysis

by half.
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in[S1] = {φ} (3.1)

out[S1] = gen[S1] (3.2)

in[Si] = out[Si−1] (3.3)

out[Si] = gen[Si] ∪ (in[Si]− kill[Si]) (3.4)

3.5.2 Context Sensitivity

Inter-procedural flow analysis is context sensitive [2] by nature. As an example let us look at

the implementation of the equals method of the ContextExample class shown in Figure 3.21.

There are two true-returning paths produced: one with field field of this and parameter

equal to null (Figure 3.22) and the other with not null (Figure 3.23). The getClass()

method has the predefined meaning of computing the runtime type and is not expanded.

Similarly, equals invocation on a field of an object is also not expanded assuming it has a

sound equality implementation.

package serl.test;
public class ContextExample {

private String field;

public static boolean testNull(Object o) {
return o == null;

}

public boolean equals(Object o) {
if(testNull(o))
return false;

if(this.getClass() != o.getClass())
return false;

ContextExample that = (ContextExample)o;
if(testNull(this.field))
return testNull(that.field);

return this.field.equals(that.field);
}

}

Figure 3.21: ContextExample class with mutiple call to testNull static method from equals
method.

Figure 3.22 has three call sites for the testNull method (line number 3, 14 and 21). For
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1 r0 := @this: serl.test.ContextExample
2 r1 := @parameter0: java.lang.Object
3 $z0 = staticinvoke <serl.test.ContextExample: boolean testNull(java.lang.Object)>(r1)
4 r0 := @parameter0: java.lang.Object
5 if r0 != null goto return 0
6 return 0
7 $z0 = staticinvoke <serl.test.ContextExample: boolean testNull(java.lang.Object)>(r1)
8 if $z0 == 0 goto $r3 = virtualinvoke r0.<java.lang.Object: java.lang.Class getClass()>()
9 $r3 = virtualinvoke r0.<java.lang.Object: java.lang.Class getClass()>()
10 $r4 = virtualinvoke r1.<java.lang.Object: java.lang.Class getClass()>()
11 if $r3 == $r4 goto r2 = (serl.test.ContextExample) r1
12 r2 = (serl.test.ContextExample) r1
13 $r5 = r0.<serl.test.ContextExample: java.lang.String field>
14 $z1 = staticinvoke <serl.test.ContextExample: boolean testNull(java.lang.Object)>($r5)
15 r0 := @parameter0: java.lang.Object
16 if r0 != null goto return 0
17 return 1
18 $z1 = staticinvoke <serl.test.ContextExample: boolean testNull(java.lang.Object)>($r5)
19 if $z1 == 0 goto $r7 = r0.<serl.test.ContextExample: java.lang.String field>
20 $r6 = r2.<serl.test.ContextExample: java.lang.String field>
21 $z2 = staticinvoke <serl.test.ContextExample: boolean testNull(java.lang.Object)>($r6)
22 r0 := @parameter0: java.lang.Object
23 if r0 != null goto return 0
24 return 1
25 $z2 = staticinvoke <serl.test.ContextExample: boolean testNull(java.lang.Object)>($r6)
26 return $z2

Figure 3.22: ContextExample.equals with this.field and that.field null.

context sensitivity, the path generator has cloned the path for different call sites. Even

though the block containing line numbers 15-17 and 22-24 are the same, they are not equal

as these paths are results of different calling contexts (14 and 21 respectively). Similarly,

local variables with the name r0 declared at line 1, 4, 15, and 22 are not equal even though

they share same name because they have different calling contexts. These facts also apply

to Figure 3.23. Path blocks 4-6 and 15-17 are considered unequal even though they are the

same set of statements generated from path generation of the typeCheck method. Similarly,

identically named variables at different calling contexts are not equal in this path as well.

Context sensitivity is achieved by decorating each Jimple statement with a context

object. The decorated Jimple statement is called PathNode. Two different PathNodes in

a path are not equal; they have different physical memory. A context object C is of a

form: C = (call site, resolved method, resolved class). It contains a call site (a PathNode

linking back to the calling statement), a resolved method (method that is resolved using

CHA for given invoke expression at the call site), and a resolved class (a class containing

the resolved method). It is possible to find the declaring class of a method directly using
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1 r0 := @this: serl.test.ContextExample
2 r1 := @parameter0: java.lang.Object
3 $z0 = staticinvoke <serl.test.ContextExample: boolean testNull(java.lang.Object)>(r1)
4 r0 := @parameter0: java.lang.Object
5 if r0 != null goto return 0
6 return 0
7 $z0 = staticinvoke <serl.test.ContextExample: boolean testNull(java.lang.Object)>(r1)
8 if $z0 == 0 goto $r3 = virtualinvoke r0.<java.lang.Object: java.lang.Class getClass()>()
9 $r3 = virtualinvoke r0.<java.lang.Object: java.lang.Class getClass()>()
10 $r4 = virtualinvoke r1.<java.lang.Object: java.lang.Class getClass()>()
11 if $r3 == $r4 goto r2 = (serl.test.ContextExample) r1
12 r2 = (serl.test.ContextExample) r1
13 $r5 = r0.<serl.test.ContextExample: java.lang.String field>
14 $z1 = staticinvoke <serl.test.ContextExample: boolean testNull(java.lang.Object)>($r5)
15 r0 := @parameter0: java.lang.Object
16 if r0 != null goto return 0
17 return 0
18 $z1 = staticinvoke <serl.test.ContextExample: boolean testNull(java.lang.Object)>($r5)
19 if $z1 == 0 goto $r7 = r0.<serl.test.ContextExample: java.lang.String field>
20 $r7 = r0.<serl.test.ContextExample: java.lang.String field>
21 $r8 = r2.<serl.test.ContextExample: java.lang.String field>
22 $z3 = virtualinvoke $r7.<java.lang.String: boolean equals(java.lang.Object)>($r8)
23 return $z3

Figure 3.23: ContextExample.equals with this.field and that.field not null.

the given method of context object. However, at times, a subclass will not override some

of the parent methods and if analysis of a parent method is to be done in the context of

the subclass then class information is needed for a context object. Let us represent each

statement of Figure 3.23 by S1, S2, ..., S23. Altogether, the path requires three context

objects to model context sensitivity:

• Statements {S1−3, S7−14, S18−23} are assigned a context C1 = (null, equals,

ContextExample). A null call site in C1 implies that there is no calling site for

the equals method of the ContextExample class as this is the entry method. C1 is

applied to all of the statements in the equals method excluding statements resulted

from processing of invoke expressions.

• Statements S4−6 are assigned a context C2 = (S3, testNull, ContextExample). The

statement block S4−6 was produced from the invoke expression at statement S3 which

was resolved to the testNull method of the ContextExample class.

• Statements S15−17 are assigned a context C3 = (S14, testNull, ContextExample).

The statement block S15−17 was produced from the invoke expression at statement

S14 which was resolved to the testNull method of the ContextExample class.
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A PathNode representing a Jimple statement with context as decorating object only

establishes statement level context sensitivity. The underlying local variables/references of

two identical Jimple statements taken from the same method but expanded at different

points in a path share the same memory location essentially making them equal. For exam-

ple, in Figure 3.23, local variable r0 at line 4 is equal to r0 at line 15 as both of these variables

and corresponding Jimple statements came from the same method testNull that maintains

a single copy of its statements in the memory. Hence, a variable/reference level context

sensitivity is also required to distinguish r0 at line 4 from r0 at line 15. This is done by an-

other decorator object called V alueInContext of the form V = (LocalV ariable, Context).

Local variable is a Jimple object for a local variable like r0 and context is the context of the

PathNode where this local variable is defined or used. Hence, r0 at line 4 is represented as

V1 = (r0, C2) and r0 at line 15 is represented as V2 = (r0, C3), C1 and C2 being the context

of line 4 and 15 respectively. V1 and V2 are now two different entities due to difference in

contexts. In the presence of reference sensitivity, a flow analysis will not overwrite the flow

set for r0 at line 4 with the flow set for r0 at line 15 and it will be possible to perform inter-

procedural flow analysis like copy propagation analysis that can map back an assignments

to a local variable at a called method to the locals or globals declared or used at the calling

method.

3.6 Code Pattern Detection

A path produced by the path generator is essentially a list of PathNodes (containing Jimple

statements) with their execution order preserved. The code pattern detector tries to query

the structure as well as execution order of these statements to extract some pattern in the

paths being analyzed. A specialized copy propagation analysis tool called ReferenceProp-

agationAnalysis is built to run on top of these paths to extract two kinds of information:

copy root and composing root. Both of these analyses are repeatedly used for identification

of code patterns in a path.
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3.6.1 Copy Root

The Copy root of a variable is the root assignment of that variable in a given path. The

Copy root of a variable at a point (before or after a statement) in a path is evaluated with

the following recursive rules:

1. CopyRoot(Expression) = Expression, e.g. CopyRoot(this.field) = this.field, Copy-

Root(this.equals(that)) = this.equals(that), CopyRoot(this.field[i]) = this.field[i] or

CopyRoot(a-b) = a - b.

2. CopyRoot(Value) = CopyRoot(Expression), if the path has a definition statement

such as “Value = Expression” provided this definition is not killed before the evalua-

tion point, e.g. immediately after “x = this.field” statement, CopyRoot(x) = Copy-

Root(this.field) = this.field. Similarly, for path [x = this; y = x; return y;], Copy-

Root(y) = this after “y = x;” statement.

3. CopyRoot(Formal Parameter) = Formal Parameter, for entry method.

4. CopyRoot(Formal Parameter) = CopyRoot(Actual Parameter), for non-entry method.

3.6.2 Composing Root

The Composing root of a reference variable is the base of the root dereferencing assignment

in a path. The Composing root of a reference variable at a point (before or after a statement)

in a path is evaluated with following rules:

1. ComposingRoot(Non Object Reference/Value) = null, e.g. ComposingRoot(100) =

null.

2. ComposingRoot(Non Object Evaluating Expression) = null, e.g. ComposingRoot(a -

b) = null.

3. ComposingRoot(This Reference) = This Reference, e.g. ComposingRoot(this) = this.

4. ComposingRoot(Formal Parameter) = Formal Parameter, for entry method.
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5. ComposingRoot(Formal Parameter) = ComposingRoot(Actual Parameter), for non

entry method.

6. ComposingRoot(Static Dereferencing Expression) = null, e.g. ComposingRoot(Type.field)

= null, ComposingRoot(Type.method(param)) = null.

7. ComposingRoot(Pointer Dereferencing Expression) = ComposingRoot(Pointer), e.g.

ComposingRoot(this.field) = ComposingRoot(this) = this, ComposingRoot(this.equals(that))

= ComposingRoot(this) = this, ComposingRoot(this.field[i]) = ComposingRoot(this.field)

= ComposingRoot(this) = this.

8. ComposingRoot(Value) = ComposingRoot(Expression), if the path has a definition

statement such as “Value = Expression” provided this definition is not killed before the

evaluation point e.g. for path [x = this; y = x; return y;], ComposingRoot(y) = Com-

posingRoot(x) = ComposingRoot(this) = this after“y = x;” statement which is same

as copy root. Similarly, for path [a = this; b = a; c = b.field; d = c; return d;], Com-

posingRoot(d) = ComposingRoot(c) = ComposingRoot(b.field) = ComposingRoot(b)

= ComposingRoot(a) = ComposingRoot(this) = this, after “d = c;” statement.

Let’s consider the path in Figure 3.23. At line 2, the copy root of r1 is parameter0 (or

Object o). At line 4 the copy root of r0 is parameter0 of the equals method (not parameter0

of typeCheck) because r1 of the equals method is assigned to r0 of typeCheck due to aliasing

of the actual parameter (argument) and formal parameter. Similarly, at line 20, copy root

of r7 is r0.field, a field reference expression and copy root of z3 at line 23 is r7.equals(r8),

a virtual invoke expression. The Composing root of r0 is the this reference at line 1. The

Composing root of r5 at line number 13 is the this reference and the composing root of r8

at line number 21 is parameter0 (or Object o).

The copy root and composing root are very important constructs for Jimple code pattern

detection. The detected patterns are used for error reporting and association with alloy

code. The pattern detector creates a mapping of one or more Jimple statement to an alloy

code element which is later translated to a full alloy module by CodeGenerator discussed in

56



Section 3.7. Some of the interesting code patterns detected are explained in the following

sections.

3.6.3 Type Checking Pattern

Type checking in Java can be done in several ways. The pattern detector detects four

different kinds of type checking code patterns. Assuming a Point class and parameter o of

the equals method, type checking can be done in the following ways:

1. Using instanceof operator, e.g. o instanceof Point

2. Using getClass() method, e.g. this.getClass() == o.getClass()

3. Using Type.class static field, e.g. o.getClass() == Point.class

4. Using ClassCastException, e.g. try{Point that = (Point)o; . . . }catch(ClassCastException

e){return false;}

Here we present an example of a detector that detects instanceof type checking for the

equals method. The algorithm shown in Figure 3.24 takes a path P as input and outputs a

set of nodes S containing instanceof type checking patterns in P . Let us run the algorithm

in the equals method of a Person class shown in Figure 3.25. But first, we need to apply

the inter-procedure path generator to get corresponding paths for the equals method; in

this case, we just get 1 as shown in Figure 3.26 . The algorithm works in the following

way:

1. Iterates through Jimple statements in the path looking for an IfStmt. It finds one at

line 4.

2. Gets conditional expression (with == or !=) of if statement and check if right operand

is integer constant or not. In this case, $z0 != 0, and is true.

3. Checks if copy root of left local variable is instanceof expression or not. CopyRoot($z0)

= (r1 instanceof serl.test.Person), which is an instanceof expression.
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S InstanceOfTypeCheckDetector(P) {
S = {} // Set of PathNode containing type check statment
i = 0 // Sentinel for iterating over P
for(i = 0 to length(P) - 1) {
s = statement of path node P[i]
if(s is If statment) {
c = condition expression of s
if(c has == or != conditional operator) {
rOp = right operand of c
if(rOp is integer constant) {
lOp = left operand of c
cpLOp = CopyRoot(lOp)
if(cpLOp is instance of check expression) {
iOp = operand of cpLOp
cpIOp = CopyRoot(iOp)
if(cpIOp is first parameter) {
add P[i] to S

}
}

}
}

}
}
return S

}

Figure 3.24: Detector for instanceof type checking pattern.

package serl.test;
public class Person {
1 private int age;
2 private String name;

3 public boolean equals(Object o) {
4 if(!(o instanceof Person))
5 return false;
6 Person that = (Person) o;
7 return this.age == that.age &&
8 this.name.equals(that.name);
9 }
}

Figure 3.25: Person.equals method with instanceof type checking.

1 r0 := @this: serl.test.Person
2 r1 := @parameter0: java.lang.Object
3 $z0 = r1 instanceof serl.test.Person
4 if $z0 != 0 goto r2 = (serl.test.Person) r1
5 r2 = (serl.test.Person) r1
6 $i0 = r0.<serl.test.Person: int age>
7 $i1 = r2.<serl.test.Person: int age>
8 if $i0 != $i1 goto return 0
9 $r3 = r0.<serl.test.Person: java.lang.String name>
10 $r4 = r2.<serl.test.Person: java.lang.String name>
11 $z1 = virtualinvoke $r3.<java.lang.String: boolean equals(java.lang.Object)>($r4)
12 if $z1 == 0 goto return 0
13 return 1

Figure 3.26: Path for Point.equals method of Figure 3.25.
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4. Checks if copy root of operand of instanceof expression is parameter0 or not. Copy-

Root(r1) = parameter0 in this case. Thus, a type checking statement has been iden-

tified and added to S.

5. This process repeats until all of the statements in the paths are traversed.

3.6.4 State Equality Pattern

A state of an object can be a value in a field or a value returned by a getter method or can be

a method itself that was not expanded (e.g. interface method like java.util.Collection.size()

in Java which has a pre-defined meaning of returning the size of a collection). The pattern

detector for state checking pattern works in two ways: one for equality comparison using

the == or != operator and the other for equality comparison using the equals or compareTo

method. Let’s consider the path in Figure 3.26 to understand the internal working of the

state check detector shown in Figure 3.27.

1. It Iterates through Jimple statements in the path looking for an IfStmt. It finds one

at line 4.

2. Checks if copy roots of both left and right operands are field references. This is not

true.

3. Checks if copy root of left operand is invoke expression and right operand is integer

constant. Copy root of left operand is instanceof invoke expression. So, this is not

true.

4. Checks if copy root of left operand is == or != conditional expression and right

operand is integer. This is also not true.

5. It iterates further till it reaches line 8 where it finds IfStmt.

6. Checks if copy roots of both left and right operands are field reference. This is true

(ro.age and r2.age).
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S StateCheckDetector(P) {
S = {} // Set of PathNode containing state check statment
i = 0 // Sentinel for iterating over P
for(i = 0 to length(P) - 1) {
s = statement of path node P[i]
if(s is If statment) {
c = condition expression of s
if(c has == or != conditional operator) {
lOp = left operand of c
rOp = right operand of c
lCpOp = CopyRoot(lOp)
rCpOp = CopyRoot(rOp)

// Note instead of field reference an unexpanded
// instance invoke expression could be present
if(lCpOp is field reference && rCpOp is field reference) {

if(CheckThisThat(lOp, rOp)) {
// Detected pattern: if(this.field == that.field) ...
add P[i] to S

}
}
else if(lCpOp is instance invoke expression && rOp is integer constant) {
m = method in lCpOp
if(m is equals method || m is compareTo method) {
// m could be of form b.equals(a) or b.compareTo(a)
b = base of lCpOp
a = arguement(0) of lCpOp
aCp = CopyRoot(a)
bCp = CopyRoot(b)

if(aCp is field reference && bCp is field reference) {
if(CheckThisThat(a, b)) {
// Detected pattern: if(this.field.equals(that.field)) ...
add P[i] to S

}
}

}
}
else if(lCpOp is == or != conditional expression && rOp is integer constant) {
nLOp = left operand of lCpOp
nROp = right operand of lCpOp
nLCpOp = CopyRoot(lOp)
nRCpOp = CopyRoot(rOp)

if(nLCpOp is field reference && nRCpOp is field reference) {
if(CheckThisThat(nLOp, nROp)) {
// Detected pattern: [temp = (this.field == that.field); if(temp == 1) ...]
add P[i] to S

}
}

}
}

}
}
return S

}

// Checks wheter composing root of lOp and rOp are this reference and parameter(0)
// reference respectively or vice versa; i.e. this and o for equals(Object o) method
boolean CheckThisThat(lOp, rOp) {
lCmOp = ComposingRoot(lOp)
rCmOp = ComposingRoot(rOp)

if((lCmOp is this reference && rCmOp is parameter(0) reference) ||
(rCmOp is this reference && lCmOp is parameter(0) reference) ) {
return true

}
return false

}

Figure 3.27: Detector for instanceof type checking pattern.
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7. It then calls CheckThisThat(i0, i1) to check if composing root of i0 and i1 are this

and parameter reference respectively or vice versa. This is true as ComposingRoot(i0)

= @this and ComposingRoot(i1) = @parameter0.

8. We have detected this.age == that.age pattern, so, the algorithm adds statement at

line 8 to S.

9. It further iterates through statements until its reaches line 12.

10. This time the else if block where copy root of left operand is instance invoke expres-

sion3 is satisfied.

11. Base of invoke expression is r2 and 0th argument is $r4 .

12. The algorithm checks if copy root of base $r3 and argument $r4 are field references.

True in this case: CopyRoot($r3) = r0.name and CopyRoot($r4) = r2.name.

13. Checks if the composing roots of $r3 and $r4 are this and parameter0 respectively or

vice versa. True is this case: ComposingRoot($r3) = @this and ComposingRoot($r4)

= @parameter0.

14. This time we have detected this.name.equals(that.name) check pattern and statement

at line 12 is added to S.

15. The algorithm then iterates through rest of the path checking for these conditions.

After the algorithm terminates S will have statement at line 8 and 12 as state checking

statement.

Similarly, there are more detectors for checking array equality patterns, Java collection’s

List, Map and Set equality pattern have been developed but instead of presenting algorithms

for them which tend to get longer, we present example source code and conditions that we

look for in order to classify a set of PathNodes as a pattern. Particularly, three patterns

will be discussed: Array, Set and Map equality pattern.
3Note that InstanceInvokeExpr in Soot is super type of VirtualInvokeExpr and InterfaceInvokeExpr mean-

ing these expression dereference object pointers not static class pointers which is done by StaticInvokeExpr.
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3.6.5 Array Equality Pattern

In array equality pattern we look for three different components in the source code: size

check, bound check and elements check. Let us re-consider the ArrayPattern class shown

in Figure 3.17. Size check enforces the size of two arrays (this.array and that.array) to be

equal, bound check enforces that the same sentinel is used to iterate through this.array and

that.array and do not exceed size of these arrays. Element check ensures that each element

in the two arrays are also equal.

Size check in the figure is done using if(this.array.length != that.array.length) return

false; statements. Nevertheless, it can also be done using if(this.array.length-that.array.length

<= 0) return false;. There can be several ways to write this using several combinations of

variables whose value can be known only at runtime. To generalize, we abstract out the

underlying details of the implementation and look for a conditional expression that uses

this.array.length and that.array.length as operands and evaluates to true or false. This may

introduce false positives like if(this.array.length − that.array.length == 1) as valid size

check which is wrong. However, for the sake of generalization we will accept such a check

as a valid size check. Hence, a size check pattern is an abstract boolean function s such

that y1 = s(this.array.length, that.array.length) where y1 = (> ∨⊥).

Bound check tries to enforce the array iterator to not exceed the size of arrays be-

ing compared. It is done in line 8 of Figure 3.17 as for(int i = 0; i < this.array.length;

++i). Like size check, bound check is also an abstract boolean function b that takes i ∈

integer+ and one of the arrays lengths as parameter such that y2 = b(i, this.array.length∨

that.array.length) where y2 = (> ∨ ⊥) provided y1 = > i.e. the bound check must follow

from size check.

The third check for array pattern is element check, where we iterate through each

element of both arrays and compare them to be equal. In Figure 3.17, this is done at

line 10 as if(this.array[i] != that.array[i]) return false. The equality check of an array

element accessed in part by bound variable i is an abstract boolean function e such that

y3 = e(this.array[i + α], that.array[i + β]) for some integer α and β where y3 = (> ∨ ⊥)
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provided both y1 = > and y2 = >.

Note that there are two paths (Figure 3.18 and 3.19) generated for the ArrayPattern

class of Figure 3.17. Figure 3.18 represents a path where size check and bound check is done

but the bound condition is not satisfied. This path is valid for empty arrays or when the loop

sentinel reaches the array bound. Figure 3.19 represents a path where all three checks are

done. This path is valid for non-empty arrays where the loop sentinel has not reached the

bound yet. We can combine these two paths and abstract equality comparison of two array

by a simple statement this.array == that.array in Alloy where array is an Alloy sequence.

Note that this abstraction is just an approximation and sometimes may hide array related

errors from being detected. Nevertheless, our analysis of several real life projects show that

the abstraction works for the majority of the cases as shown in Section 4.4, Table 4.3.

Array equality pattern and List equality pattern (for subtypes of java.util.List of Java’s

collection framework) are almost identical. The only difference is instead of using an inte-

ger sentinel (in array pattern), list uses either java.util.Iterator or java.util.ListIterator to

iterate through their elements in the equals method.

3.6.6 Set Equality Pattern

In the Set equality pattern we look for two components in the source code: size check and

containment check. An equals method of java.util.AbstractSet is shown in Figure 3.28. Size

check is done through if(c.size != size()) return false and containment check is done through

a return containsAll(c) statement. Instead of size check there could be an inefficient bidirec-

tional containment check this.containsAll(c) && c.containsAll(this) which is not considered

by the checker as a proper set pattern as the previous approach is more efficient. If we find

size and a containment check in a path then we conclude two sets are being compared.

Assuming an abstract state set as a member field for the AbstractSet class and that as an

object the this set is compared against, the logic for set equality can be abstracted as:
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public boolean equals(Object o) {
// Reference check
if (o == this)
return true;

// Type check
if (!(o instanceof Set))
return false;

// Set is subtype of Collection, that specifies containsAll method
Collection c = (Collection) o;

// Size check
if (c.size() != size())
return false;

try {
// Containment check
return containsAll(c);

} catch(ClassCastException unused) {
return false;

} catch(NullPointerException unused) {
return false;

}
}

Figure 3.28: Equals method of java.util.AbstractSet.

[this.size() = that.size()∧

this.containsAll(that)]

` (this.set = that.set) (3.5)

Note that the correctness of this abstraction also depends on how the size and containAll

method are implemented. These methods are interface methods and serve as a standard

specification with predefined meaning. Hence, we do not expand these interface methods.

If these methods are implemented incorrectly then such errors will go undetected by the

checker. Ideally, we are assuming that these methods are implemented to give the following

abstraction:

[|this.set| = |that.set|∧

∀e(e ∈ this.set⇒ e ∈ that.set)]

` (this.set = that.set) (3.6)
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3.6.7 Map Equality Pattern

In the Map equality pattern we look for three components: size check, bound check and map

element check like in the array equality pattern. In equals method of the java.util.AbstractMap

class of Figure 3.29, the size check is done in line 9 and 10, the bound check for iterator is

done in line 16 and the element check is done in line 22-29 where it first checks for an equal

key to null mapping in both maps in line 23-24 or an equal key to equal value mapping in

line 26-27. Like in the set, we are assuming that all of the unexpanded interface methods

are implemented according to the specification of the Java collection framework. If these

methods do not behave as specified by the specification then such cases will go undetected

by the checker. Assuming an abstract map containing set of key to value mapping pairs,

(k, v), as member field for AbstractMap class and comparison of the this map against the

that map object, the logic for the map equality pattern can be abstracted as follows:

[|this.map| = |that.map|∧

∀(k,v)((k, v) ∈ this.map⇒ (k, v) ∈ that.map)]

` (this.map = that.map) (3.7)

Ideally, we are checking that this.map and that.map have same key to value mapping.

3.7 Alloy Code Generation

Alloy code generation process relies on Eclipse’s JDT for type hierarchy computation and

Serl’s control-flow framework for path generation and pattern detection. Each detected

pattern is converted to corresponding alloy statements. An alloy module (a compilable Alloy

file) consists of logical abstraction of equals method implementations and a specification to

check the correctness of the implementations. Each module comprises abstraction of classes

in a type hierarchy that override or inherit the equals method. The language specification

for the alloy model can be found in Appendix A.

Here, we will look at important components of alloy model with reference to the equals

65



public boolean equals(Object o) {
1 // Reference check
2 if (o == this)
3 return true;

4 // Type Check
5 if (!(o instanceof Map))
6 return false;

7 Map<K,V> t = (Map<K,V>) o;

8 // Size Check
9 if (t.size() != size())
10 return false;

11 try {
12 // Iterates through each mapping(key -> value) of this map
13 // and checks for equal mapping in t map
14 Iterator<Entry<K,V>> i = entrySet().iterator();

15 // Bound Check
16 while (i.hasNext()) {
17 Entry<K,V> e = i.next();
18 K key = e.getKey();
19 V value = e.getValue();

20 // Eement check: checks if for all equal key we have
21 // equal value for both null or not null value cases
22 if (value == null) {
23 if (!(t.get(key)==null && t.containsKey(key)))
24 return false;
25 } else {
26 if (!value.equals(t.get(key)))
27 return false;
28 }
29 }
30 } catch(ClassCastException unused) {
31 return false;
32 } catch(NullPointerException unused) {
33 return false;
34 }
35 return true;
}

Figure 3.29: Equals method of java.util.AbstractMap.

method of the FieldAddedMap class shown in Figure 3.30. The type hierarchy for Fiel-

dAddedMap is shown in Figure 3.31. Here AbstractMap and FieldAddedMap override the

equals method of the Object class. Classes implementing the equals method are marked with

*. Line 3 of Figure 3.30 has a super.equals call which is delegated to HashMap. HashMap,

however, does not override the equals method of AbstractMap and thus this call is resolved

to the equals method of AbstractMap that was shown in Figure 3.29.

The generated alloy module for type hierarchy involving the FieldAddedMap class is

shown in Figure 3.32. The six top level blocks of the module are discussed in the following
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public class FieldAddedMap<K, V> extends HashMap<K, V> {
1 private char field;

2 public boolean equals(Object o) {
3 if(!super.equals(o))
4 return false;

5 if(!(o instanceof FieldAddedMap))
6 return false;

7 FieldAddedMap<K,V> that = (FieldAddedMap<K,V>)o;
8 return this.field == that.field;
9 }
}

Figure 3.30: FieldAddedMap implementing equals method.

Object

AbstractMap *
<abstract class>

HashMap
<class>

FieldAddedMap *
<class>

Map
<interface>

Object *
<class>

Figure 3.31: Type hierarchy involving FieldAddMap class.

sections.

3.7.1 Module Declaration

The module declaration defines the name of the module. Each module is associated with

a type hierarchy. The name in the figure: analysis/alloy/java util AbstractMap Hierarchy

means that this file can be found in directory analysis/alloy/ and the name java util AbstractMap Hierarchy

means that the type hierarchy is computed for java.util.AbstractMap in the context of the

project being analyzed. This class is the first class down a type hierarchy that overrides

the equals method of the java.lang.Object class.
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//**** Module declaration Block ****//
module analysis/alloy/java_util_AbstractMap_Hierarchy // AbstractMap is the base type

//**** Type Declaration Block ****//
abstract sig java_lang_Object {} // java.lang.Object class declaration

sig java_util_Map in java_lang_Object { // java.util.Map interface declaration
java_util_Map_map : Int -> Int // All maping are abstracted as int to int

}

abstract sig java_util_AbstractMap extends java_lang_Object {} // abstract for abstract Java type
fact { java_util_AbstractMap in java_util_Map } // AbstractMap implements Map interface

sig java_util_HashMap extends java_util_AbstractMap {} // HashMap inherits AbstractMap

sig serl_map_FieldAddedMap extends java_util_HashMap { // FieldAddedMap inherits HashMap
serl_map_FieldAddedMap_field : Int // All fields are abstracted as Int

}

//**** Equality Predicate Declaration Block ****//
pred java_lang_Object :: equals( that: java_lang_Object ) {

( this in java_util_HashMap - serl_map_FieldAddedMap) => // HashMap implementation
( // Start of Implication Block

( this = that ) // A Fact
or
( // Start of a FactBlock

!( this = that ) and ( that in java_util_Map ) and
( this.java_util_Map_map = that.java_util_Map_map )

)
)
else
( this in serl_map_FieldAddedMap ) => // FieldAddedMap Implementation
(

(
( this = that ) and ( that in serl_map_FieldAddedMap ) and
( this.serl_map_FieldAddedMap_field = that.serl_map_FieldAddedMap_field )

)
or
(

!( this = that ) and ( that in java_util_Map ) and
( this.java_util_Map_map = that.java_util_Map_map ) and
( that in serl_map_FieldAddedMap ) and
( this.serl_map_FieldAddedMap_field = that.serl_map_FieldAddedMap_field )

)
)

}

//**** Type Exclusion Specification Block ****//
sig ExclusionSet in java_lang_Object {}
fact {
java_util_Map - java_util_AbstractMap - java_util_HashMap - serl_map_FieldAddedMap
in ExclusionSet

}
fact {
java_util_AbstractMap - java_util_HashMap - serl_map_FieldAddedMap in ExclusionSet

}

//**** Equality Properties Specification Block ****//
assert reflexive { all a : java_lang_Object - ExclusionSet | a.equals[a] }
assert symmetric { all a, b: java_lang_Object - ExclusionSet | a.equals[b] <=> b.equals[a] }
assert transitive {

all a, b, c: java_lang_Object - ExclusionSet | a.equals[b] and b.equals[c] => a.equals[c]
}

//**** Validity Check Block ****//
// Checks implementation vs specification
check reflexive for 1 // Check for 1 object
check symmetric for 2 // Check for 2 objects
check transitive for 3 // Check for 3 objects

Figure 3.32: Alloy module for type hierarchy involving FieldAddedMap.
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3.7.2 Type Declaration

The type declaration block defines all of the associated types in a type hierarchy. There

are two components of the type declaration: field specification and sig (Alloy Signature)

specification.

Field Specification

The rules for field specification are as follow:

1. All of the fields are abstracted as Int type. In Figure 3.32, the char field of Field-

AddedMap is abstracted as Int field.

2. A method invocation where the receiver is a field is abstracted as a new field that

contains name of both the field and the method. For example, if class T with field

f has a this.f.m() == that.f.m() check in the equals method then the field of T will

be T f m not T f. The method m() is not expanded, in fact, only methods of non

composed types are expanded provided they belong to the type hierarchy of the type

being analyzed. Similarly, for this.f1.m1().f2.m2() == that.f1.m1().f2.m2() check,

the field name used is: T f1 m1 f2 m2.

3. An array field is declared as an Alloy sequence. For example, for type T with array

field f[], the alloy representation will be: T f : seq Int.

4. For a type inheriting from java.util.Map, there are several methods/fields involved in

equality checking. However we abstract the implementation details of map by intro-

ducing a map Alloy field java util Map map : Int -> Int to the type java util Map.

All of the paths of the equals method of a Map type class are evaluated to match

abstraction logic (Relation 3.7) of Section 3.6.7.

5. For a type inheriting from java.util.Set, like in map we abstract the implementation

details of set by introducing a set Alloy field java util Set set : set Int to the type
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java util Set. All of the paths of the equals method of the Set type class are evaluated

to match abstraction logic (Relation 3.6) of Section 3.6.6.

6. Similarly for a type inheriting from java.util.List, we abstract the implementation

details by introducing an Alloy sequence field java util List list : seq Int to the type

java util List. All of the paths of the equals method of the List type class are evaluated

to match array abstraction logic of Section 3.6.5.

Sig Specification

The rules for sig specification are as follow:

1. An abstract class in Java is declared as abstract sig in Alloy. Interfaces and regular

classes are declared only sig.

2. In Java, java.lang.Object is parent type of all the types. We declare it as an abstract

type because it does not contribute to the logic of equality comparison for subtypes.

All of the alloy sig inherits from java lang Object sig.

3. Java supports multiple inheritance through interface. A type in java can extend only

one type but can implement multiple interface types. Similarly in alloy, a sig can

extend one type but we use set containment operator in within a fact block to specify

interface inheritance. As a rule, for a Java class, we use extends keyword of Alloy to

model class inheritance and in keyword to model interface inheritance (e.g. abstract

sig java util AbstractMap extends java lang Object {} fact { java util AbstractMap in

java util Map }). However, for a Java interface, we use in keyword all the time to

model inheritance (e.g. sig java util Map in java lang Object { java util Map map :

Int -> Int }).

3.7.3 Equality Predicate

Equality predicate defines the implementation logic of all of the equals method in a type

hierarchy. This predicate is defined as a predicate of java lang Object that takes that
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(also of type java lang Object) as a parameter. The equality predicate is composed of

several blocks called implication blocks separated by else. (e.g. ( this in java util HashMap

- serl map FieldAddedMap) => ( . . . ) else ( this in serl map FieldAddedMap ) => (

. . . )). An implication block is further composed of fact blocks (separated by or) which

is composed of logical statements called facts. A fact can be type checking (e.g. that in

serl map FieldAddedMap) or state checking fact (e.g. this.field = that.field). We stop at

this level of object modeling.

An implication block is associated with a concrete (non-abstract, non-interface) type. It

represents the implementation of the equals method for that type. There could be multiple

paths generated for the equals method. Sometimes, these paths are abstracted as single fact

block (we call it Reduction Translation) while other times they are translated to multiple

fact blocks (we call it One-to-One Translation).

Reduction Translation

If we consider the equality implementation of AbstractMap shown in Figure 3.29, we get
four true-returning paths:

a) 1,2,3

-------------------------------------------------------------------------------------

b) 1,2,4,5,7,8,9,11,12,13,14,15,16,35

-------------------------------------------------------------------------------------

c) 1,2,4,5,7,8,9,11,12,13,14,15,16,17,18,19,20,21,22,23,16,35

-------------------------------------------------------------------------------------

d) 1,2,4,5,7,8,9,11,12,13,14,15,16,17,18,19,20,21,22,25,26,16,35

The immediate non-abstract successor of AbstractMap is HashMap, hence, it will inherit

these paths. In the implication block of HashMap (( this in java util HashMap -

serl map FieldAddedMap) => ( . . . or . . . ) ), we only have two fact blocks seperated by or.

The first fact block only has one fact this = that representing path 1. The second fact block

has three facts (!( this = that ) and ( that in java util Map ) and ( this.java util Map map

= that.java util Map map )) in which only the first two facts can be found in paths b, c,

and d but not the last map comparison fact. This is where the pattern detector comes into

play. The pattern detector is used by the code generator to detect the logic of map equality
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discussed in Section 3.6.7 and abstracts the Java implementation to the last fact of map

comparison. By doing this, we are basically uniting the different set of facts scattered over

multiple paths into one fact block. We do similar abstraction for Arrays, Lists and Sets.

One-To-One Translation

This is a Java statement to an alloy statement (a fact) translation. There are four different

kind of translations:

State Check Translation State check translation translates Jimple equality comparison

between two fields or un-expanded method done by conditional operator (== or

!=) or with comparision method (equals, compareTo) into alloy code. The State

Equality Pattern detector (discussed in Section 3.6.4) is used for detecting such

patterns. An example of such translation is ( this.serl map FieldAddedMap field =

that.serl map FieldAddedMap field ) in a fact block of implication of FieldAddedMap

class.

Type Check Translation Type check translation translates java type checking into a

corresponding alloy fact. Type Checking Pattern detectors (discussed in Section 3.6.3

are used to detect such patterns. An example of such translation for FieldAddedMap is

( that in java util Map ). We handle four different ways of type checking. Lets consider

Figure 3.33 for a sample type hierarchy. Assuming super type B that overrides the

equals method of java.lang.Object, and S and T as subtype of B and U as subtype

of S all that inherit the equals method of B. The alloy translation for each cases of

type checking in the equals method of B is shown as follows:

Object
<- B [Defines m()]

<- T
<- S

<- U [Overrides m()]

Figure 3.33: A type hierarchy for type check translation explanation.

• Java statement that instanceof B is translated as (that in B) in alloy.
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• Java statement this.getClass() == that.getClass() is translated as (that in B - S

- T) in alloy.

• Java statement this.getClass() == S.class is translated as (that in S - U) in alloy.

• Java statement that = (B)parameter is translated as (that in B) in alloy.

Dynamic Dispatch Translation Dynamic dispatch translation is essentially a type check

translation that will limit the type of receiver object to a set of identified dispatch

type for that method. For instance, let’s assume a method m() in B is overridden by

U as shown in Figure 3.33. Let’s assume the type of receiver object is resolved to be

B at call site, then a call to that.m() will result in generation of (that in B-U) fact

enforcing that call to m() method for the receiver that can be any type {B, S, T} but

not {U} since this method is overridden in U.

3.7.4 Type Exclusion Specification

This block is used to filter out all of the interface and abstract types from being considered

for counterexample. The reason behind doing this is that the interface and abstract types

cannot be initialized in real life. Furthermore, while processing pattern detection, there

may be some code patterns that are not handled by the detector. We include such types

in this block because we cannot represent its equals implementation logic. Nevertheless, we

do report such problems.

3.7.5 Equivalence Property Specification

This block simply represents the three properties of equivalence relation: reflexive, sym-

metric and transitive properties using the defined equality predicate. The block serves as

standard specification for the correctness of the equals method.

3.7.6 Validity Check

Validity checking (or Model Checking) is done in this block. To detect a reflexive violation

we need one object, to detect a symmetric violation we need two objects and to detect a
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transitive violation we need three objects. This check will return a counterexample for the

case when the equals implementation is violated.
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Chapter 4

Equals Checker Validation

4.1 Introduction

We have run the equals checker in several open source real world projects. The checker

has successfully identified many equality checking patterns discussed in Chapter 2 (e.g.

arrays, list, maps, sets, etc) and more importantly discovered several problems related to

equivalence relation in the implementations. In this chapter, we will categorize problems

reported by the checker on the basis of root causes, propose solution to these problems and

elaborate on false positives and their causes. This will be followed by the explanation of

code patterns that are not handled by the checker and their root causes.

4.2 Analysis Projects

Among different Java-based projects that have been analyzed, we found Tomcat 6 [5],

Lucene 3.0 [4] and JDK 1.5 [42] as representative of most of the problems identified by the

checker. Tomcat 6 is a web sever for hosting servlets, Lucene serves as search engine for

various websites and JDK 1.5 is a Java development kit that provides important libraries

for data structure collections, IO, network, security, graphics, etc. In Table 4.1, we have

summarized the size of these projects in terms of classes, interfaces and number of equals
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Description Tomcat 6 Lucene 3.0 JDK 1.5
Interfaces 175 76 1745
Classes 1236 888 11239
Type hierarchies involving equals method 28 67 487
Classes overriding equals method 29 96 615
Total equals method expansion 31 98 698

Table 4.1: Summary of inspected projects.

implementations1. JDK 1.5 is the largest of all with 11,239 classes out of which 615 override

the equals method. Altogether, 487 type hierarchies involve with these classes. Sometimes,

a super equals method makes a call to methods that are overriden in subclasses. In such

scenarios, the equals implementation for subclasses has to be re-examined. In JDK 1.5

altogether 698 classes were examined for a direct or inherited implementation of the equals

method. Tomcat 6 is the smallest of all in terms of examined equals implementations(31 )

which is fewer than Lucene(98 ), however in terms of total classes and interfaces Tomcat is

larger.

4.3 Path Generation and Filtering

The inter-procedure path generator produces several paths while expanding the equals

method. Some of these paths are useful while others are useless and are pruned. Pruning

is done applying different filters (implemented using flow analysis [1]) on the paths as they

are are generated. These filters are as follows:

BooleanFilter Boolean filter is a boolean value copy propagation analysis run over gen-

erated paths of the equals method. A conflict in boolean value when detected in any

intermediate path will result in pruning that path by this filter. A conflict in such

a case could be a variable evaluated true at one point of a path but later evaluated
1Note that in Chapter 2, Lucene 2.4 was used that is replaced by Lucene 3.0, the newer version. Similarly,

previous checkers could work in the presence of some compile errors but the current checker uses Soot [44]
and requires these compile error to be fixed for proper analysis. While doing that some of the JDK 1.5
non public classes have been deleted due to excessive compile errors while porting to Eclipse [17] project
environment.
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as false without any assignment in between. It also eliminates dead code related to

boolean variables and false returning paths.

NullnessAnalysisFilter NullnessAnalysisFilter is null constant copy propagation analy-

sis. Like Boolean Filter a path having a conflict in null value is pruned.

TypeAnalysisFilter Type analysis filter prunes the paths containing conflicting types for

a variable.

ThrowAnalysisFilter Throw analysis filtering prunes the paths that throw exception.

Redundant Type.class Filtering We have observed Java Virtual Machine injecting some

dynamic type resolution code for static class field (Type.class) in type checking state-

ments like that.getClass() == Type.class. Some of these paths are redundant and are

pruned using this filter.

Description Tomcat 6 Lucene 3.0 JDK 1.5
Total Paths 643 1232 49241
Boolean Path Filtering 473 763 30151
Nullness Analysis Filtering 0 0 845
Type Analysis Filtering 0 0 670
Throw Analysis Filtering 0 0 4440
Redundant Type.class Filtering 0 0 0
Other Intermediate Paths 61 136 7744
Final Working Paths 109 333 5391

Table 4.2: Summary of path generation and filtering.

The summary of path generation for the three project is shown in Table 4.2. The main

problem with path based analysis has been considered to be path explosion. However, our

approach of pruning paths whenever possible by applying these filters prune more than 80%

of the useless paths in all of these projects. Note that there could have been exponentially

more paths than the total number of paths shown for each project. Since the filters are

applied on each intermediate path after a change (method expansion), most of the useless

paths are pruned in the earlier phase of path generation. Hence, even for a large project
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like JDK, we have merely few thousands paths to be considered for pattern detection and

Alloy [27] code generation.

4.4 Detectable Patterns

There are 7 different equality checking patterns that the checker is capable of detecting.

These patterns have also been discussed in Section 3.6:

Type Checking Type checking pattern checks the type of parameter passed to the equals

method. e.g. (o instanceof Type), this.getClass() == that.getClass(), etc.

State Comparison State comparison pattern checks fields and method comparison. e.g.

this.field == that.field, this.getField().equals(that.getField()), etc.

State Comparison Involving Null Constant Sometimes state fields are checked for

null value before performing a regular field comparison that might result in a path with

the following code pattern: if(this.field == null && that.field == null) return true;.

We translate such pattern as valid state check pattern i.e. (this.field == that.field).

Array Comparison This pattern contains logic of comparing two arrays.

List Comparison This pattern contains logic of comparing java.util.List types.

Set Comparison This pattern contains logic of comparing java.util.Set types.

Map Comparison This pattern contains logic of comparing java.util.Map types.

Table 4.3 summarizes the number of detected patterns in the project. Note that these

patterns are accumulated per path basis. For clarity, a state comparison involving a field

might appear in two paths of the same equals method. Even though the same field is

being compared, we consider each path at a time and we will record two state comparison

patterns even though we are comparing only one field in the class. So, the associated

numbers represent behavior in the paths rather than the structure in the equals method.
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Description Tomcat 6 Lucene 3.0 JDK 1.5
Type Checking 254 570 4409
State Comparison 256 935 7029
State Comparison Involving Null Constant 83 165 831
Array Comparison 30 8 2513
List Comparison 0 0 117
Set Comparison 0 0 6
Map Comparison 6 0 108
Total Detected Patterns 629 1678 15013

Table 4.3: Summary of detected patterns.

4.5 Detected Problems

We have discussed the equivalence contract for the equals method in Section 1.1. There are

three properties associated with an equivalence relation: reflexive, symmetric and transitive

properties. The checker primarily reports on the possibility of violation of these properties

in the implementation of the equals method. Besides these, the checker also reports on

several other issues related to the equals implementation. A summary of all the problems

reported by the checker is shown in Table 4.4 and a complete list of reported errors and

warnings can be found in Appendices B and C, respectively.

4.5.1 Reflexive Property Violation

A reflexive property violation occurs when an object is not equal to itself. To illustrate on
this kind of violation, lets consider the java.net.InetAddress class from JDK 1.5:

public class InetAddress implements ... {
/**

* Compares this object against the specified object. The result is true if and only

* if the argument is not null and it represents the same IP address as this object. ...

*/

public boolean equals(Object obj) {
return false;

}
}

The implementation of the equals method in this case always returns false. Hence an

object of InetAddress will not be equal to any other object including itself. This clearly
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Description JDK 1.5 Lucene 3.0 Tomcat 6
Prob. False Pos. Prob. False Pos. Prob. False Pos.

Reflexive Property Violation 3 2 0 0 0 0
Symmetric Property Violation 10 0 1 0 1 0
Transitive Property Violation 8 2 0 1 1 0
Unguarded null parameter 20 0 6 0 0 0
Probable ClassCastException 18 0 1 0 0 0
Similarity for Equality 13 0 0 0 0 0
State comparison on same object 3 0 0 0 0 0
Equals overloading for similarity 15 0 0 0 4 0
Equals overloading without overriding 22 0 0 0 4 0
This reference type test 0 1 0 0 0 0
Total Problems 112 5 8 1 10 0

Suspicious Implementation Warnings
Use of non-equals method on field 5 0 0 0 0 0
Domain specific map implementation 5 0 0 0 0 0
Wrapper implementation pattern 15 0 0 0 3 0
Equals overloading with overriding 43 0 1 0 1 0
Path generation reaching cut-off 11 - 0 - 0 -
Total Suspicious Implementations 79 0 1 0 4 0

Table 4.4: Summary of detected problems.

violates the reflexive property of the equivalence relation. Furthermore, javadoc describes an

implementation of the equals method which should have compared the states of InetAddress

objects before returning true or false. We found 2 classes in JDK 1.5 that always return

false and a case that always throws UnsupportedOperationException in equals method.

False Positives

The checker reports two false positives for the reflexive property violation in JDK 1.5. Both

of these are due to an imprecise state space assumption in abstraction. We assume that if a

state is operated on then a resulting new state may or may not be equal to the state before

operation. For instance, the this.field / 2 == that.field / 2 expression is checking if the

result of the division operation on the fields is equal or not. We abstract such a comparison

in alloy as this.DIV field 2 = that.DIV field 2 which is basically a prefix representation of

an expression on each side. The effect of such an abstraction is that it creates a new state

different from previous state. Nevertheless, if the result of the operation has the same value
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as the previous state then we have an imprecise assumption on the state space and may

result in a false positive. For instance, let’s consider the com.sun.jmx.snmp.IPAcl.GroupImpl

class:

class GroupImpl extends PrincipalImpl implements ... {
// Constructs a group using the specified subnet mask

public GroupImpl (String mask) throws ... {
super(mask);

}

public boolean equals (Object p) {
if (p instanceof PrincipalImpl || p instanceof GroupImpl) {

if ((super.hashCode() & p.hashCode()) == p.hashCode()) return true;

else return false;

}
else { return false; }

}
}

GoupImpl class represents a group of hosts in a subnet and is constructed using a sub-

net mask (e.g. 255.255.255.0 mask represents a 256 available host in a traditional Class C

network). The alloy model for GroupImpl is shown in Figure 4.12. There are two things to

consider. First, the hashCode() method is a special function and is represented as a state

of the java.lang.Object class and translated as Object hashcode field. The operation su-

per.hashCode() & p.hashCode() is abstracted as a new state Object AND hashcode hashcode

which is a prefix representation of the binary expression. Our assumption for such an ab-

straction is that an operation on an existing state will result in a new state which may

or may not be equal to the previous state. Hence, for the case when they are not equal,

Alloy reports a reflexive property violation as shown in the counterexample of Figure 4.2.

Nevertheless, for this.equals(this), super.hashCode() & p.hashCode() is exactly equal to su-

per.hashCode() and hence we do not have a reflexive property violation in the class. This

class, however, has a symmetric and a transtive property violation that will be discussed in

the following sections.
2Note that we have changed the generated alloy model to make it fit in the available space.
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abstract sig Object {
Object_hashcode : Int,
Object_AND_hashcode_hashcode : Int

}
sig PrincipalImpl extends Object { }

sig GroupImpl extends PrincipalImpl { }

pred Object :: equals( that: Object ) {
( this in GroupImpl ) =>
(

( that in PrincipalImpl )
and
( this.Object_AND_hashcode_hashcode = that.Object_hashcode )

)
}

sig ExclusionSet in Object { }
fact { PrincipalImpl - GroupImpl in ExclusionSet }

assert reflexive { all a : Object - ExclusionSet | a.equals[a] }
assert symmetric { all a, b: Object - ExclusionSet | a.equals[b] <=> b.equals[a] }
assert transitive { all a, b, c: Object - ExclusionSet | a.equals[b] and b.equals[c] => a.equals[c] }

check reflexive for 1
check symmetric for 2
check transitive for 3

Figure 4.1: Alloy Model for GroupImpl class.

Figure 4.2: Counterexample for reflexive property violation in GroupImpl class.

4.5.2 Symmetric Property Violation

A symmetric property violation happens for two objects a and b when a.equals(b) is true

and b.equals(a) is false or vice versa. There are several cases of symmetric property violation

reported in the preliminary case study of Section 2.2 for JDK 1.5 that are also detected by

the checker. Here, we present two instances of symmetric property violation one from JDK

1.5 and another from Tomacat 6. Lets consider an Alloy model for the GroupImpl class from

JDK 1.5 shown in Figure 4.1. The symmetric property violation is shown in the counterex-

ample of Figure 4.3. The counterexample is basically telling us that we will get a symmetric
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Figure 4.3: Counterexample for symmetric property violation in GroupImple class.

property violation when two objects of the GroupImpl class are compared with the equals

method where both objects have the same value for the Object AND hashcode hashcode

field but different value for the Object hashcode. Since the boolean expression with the

bitwise-and operator in the equals has been abstracted to a new state, it is not directly

clear how we get such a violation in real code. To illustrate the meaning with real code,

let’s look at the following code snippet:

GroupImpl group1 = new GroupImpl("255.255.255.128");

GroupImpl group2 = new GroupImpl("255.255.255.0");

group1.equals(group2); // Returns true

group2.equals(group1); // Returns false

Here, the subnet mask 255.255.255.128 for group1 in a class C network represents 2

possible subnets with 128 available hosts each and the subnet 255.255.255.0 for group2 rep-

resents 1 possible subnet with 256 available hosts. The hashCode() method for GroupImpl

calls super.hashCode() that returns a 32 bit representation of the supplied mask. Hence,

the 8 bit LSB (Least Significant Bits) for group1, say LSB8(group1), is 10000000 and for

group2, say LSB8(group2), is 00000000. Hence LSB8(group1); &LSB8(group2) is equal to

LSB8(group2) but LSB8(group2)&LSB8(group1) is not equal to LSB8(group1) all MSBs

(Most Significant Bit) being equal leads to the symmetric property violation. This also

means that group2 contains all of the hosts contained in group1 but the opposite is not

true. Hence, the lack of a bidirectional containment relation in the equivalence relation is

causes the symmetric property violation in GroupImpl class. Here we have a fundamental
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problem in the logic of the equivalence relation for GroupImpl. One possible fix for this

problem would be to move this containment relation to another method and implement an

equivalence relation on mask.

Figure 4.4: Type hierarchy associated with AbstractReplicatedMap class.

We will now present yet another case of symmetric violation from Tomcat 6. Let’s con-

sider the type hierarchy associated with the org.apache.catalina.tribes.tipis.AbstractReplicatedMap

class from Tomcat 6 shown in Figure 4.4. AbstractReplicatedMap inherits from Java util’s

ConcurrentHashMap. ConcurrentHasMap inherits the equals implemenation from AbstractMap.

Similarly, LazyReplicatedMap and ReplicatedMap inherit the equals method implementation

from AbstractReplicatedMap. AbstractReplicatedMap overrides the equals implementation

of AbstractMap as shown in Figure 4.5.

public abstract class AbstractReplicatedMap extends ConcurrentHashMap implements ... {
protected transient byte[] mapContextName; // State is represented as array

public boolean equals(Object o) {
if (o == null) return false;
if (!(o instanceof AbstractReplicatedMap)) return false;
if (!(o.getClass().equals(this.getClass()))) return false;
AbstractReplicatedMap other = (AbstractReplicatedMap) o;
return Arrays.equals(mapContextName, other.mapContextName);

}
... // Rest of code

}

Figure 4.5: Equals implementation of AbstractReplicatedMap.

The equality implementation of AbstractMap has already been discussed in Section 3.6.7

using Figure 3.29. The implementation of AbstractReplicatedMap, however, is not a reg-

ular map pattern and uses array comparisons. The Map hierarchy of the java.util pack-

age is a type compatible hierarchy which is inherited by AbstractReplicatedMap but intro-

duces type-incompaitble sub-hierarchy by performing an o.getClass().equals(this.getClass())

check. Also note that the instanceof check before the getClass check is redundant because
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the latter is stronger type checking than the former. With the given implementation, a Con-

currentHashMap with the same state will be equal to a subtype of AbstractReplicatedMap

but the opposite is not true:

ConcurrentHashMap hashMap = new ConcurrentHashMap();

LazyReplicatedMap replicatedMap = new LazyReplicatedMap(...);

hashMap.put("Key1", "Value1");

replicatedMap.put("Key1", "Value1");

hashMap.equals(replicatedMap); // returns true

replicatedMap.equals(hashMap); // returns false

Figure 4.6 shows Alloy model for the type hierarchy. We are not using a fully-qualified

name for the sake of fitting the figure in the available space. In the implication block

(defined in Section 3.7) of ConcurrentHasMap we see regular map fields being compared

but for ReplicatedMap and LazyReplicatedMap we see the mapContextName array being

compared. Hence, the state of AbstractMap and AbstractReplicatedMap are totally different

objects. In such a scenario, ReplicatedMap should have composed ConcurrentHashMap

rather than extending it.

Our checker has reported a symmetric property violation in 10 type hierarchies in JDK

1.5, 1 in Lucene and 1 in Tomcat 6.

4.5.3 Transitive Property Violation

A Transitive property violation happens for three objects a, b and c when a.equals(b) is

true, b.equals(c) is true but a.equals(c) is not true.

We will now discuss an instance of probable transitive property violation in the class

com.sun.jndi.ldap.LdapName.TypeAndValue shown in Figure 4.7. LdapName implements

compound names for LDAP v3 as specified by RFC 2253. The TypeAndValue inner class

represents an attribute type and its corresponding value. Inside the equals method there are

three kinds of state comparison: type field, value field and getValueComparable() method.

An object of TypeAndValue type is equal to another object of the same type if either the

type and value fields are equal or the type and return values of the getValueComparable()

methods are equal and the value fields are unequal. Since a call to the getValueComparable()
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abstract sig Object { }

sig Map in Object {
map : Int -> Int

}

abstract sig AbstractMap extends Object { }
fact { AbstractMap in Map }

sig ConcurrentHashMap extends AbstractMap { }

abstract sig AbstractReplicatedMap extends ConcurrentHashMap {
mapContextName : seq Int

}

sig LazyReplicatedMap extends AbstractReplicatedMap { }

sig ReplicatedMap extends AbstractReplicatedMap { }

pred Object :: equals( that: Object ) {
( this in ConcurrentHashMap - AbstractReplicatedMap - LazyReplicatedMap - ReplicatedMap ) =>
(

( this = that )
or
(

!( this = that )
and
( that in Map )
and
( this.map = that.map )

)
)
else
( this in LazyReplicatedMap ) =>
(

( that in LazyReplicatedMap )
and
( this.mapContextName = that.mapContextName )

)
else
( this in ReplicatedMap ) =>
(

( that in ReplicatedMap )
and
( this.mapContextName = that.mapContextName )

)
}
// Makes Interfaces and Abstract types to be not considered for counter example
sig ExclusionSet in Object { }
fact { AbstractMap - ConcurrentHashMap - AbstractReplicatedMap -

LazyReplicatedMap - ReplicatedMap in ExclusionSet }
fact { Map - AbstractMap - ConcurrentHashMap - AbstractReplicatedMap -

LazyReplicatedMap - ReplicatedMap in ExclusionSet }
fact { AbstractReplicatedMap - LazyReplicatedMap - ReplicatedMap in ExclusionSet }

assert reflexive { all a : Object - ExclusionSet | a.equals[a] }
assert symmetric { all a, b: Object - ExclusionSet | a.equals[b] <=> b.equals[a] }
assert transitive { all a, b, c: Object - ExclusionSet | a.equals[b] and b.equals[c] => a.equals[c] }

check reflexive for 1
check symmetric for 2
check transitive for 3

Figure 4.6: Alloy model for AbstractReplicatedMap type hierarchy.
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static class TypeAndValue {
private final String value;
private final boolean binary;
private final boolean valueCaseSensitive;

public final boolean equals(Object obj) {
if (!(obj instanceof TypeAndValue)) { return false; }
TypeAndValue that = (TypeAndValue)obj;
return (type.equalsIgnoreCase(that.type) &&
(value.equals(that.value) || getValueComparable().equals(that.getValueComparable())));

}
... // Rest of TypeAndValue code

}

Figure 4.7: TypeAndValue Class.

abstract sig java_lang_Object { }
sig TypeAndValue extends java_lang_Object {

value : Int,
valueComparable : Int,
type : Int

}
pred java_lang_Object :: equals( that: java_lang_Object ) {

( this in TypeAndValue ) =>
( (

( that in TypeAndValue )
and
( this.type = that.type )
and
!( this.value = that.value )
and
( this.valueComparable = that.valueComparable )

)
or
(

( that in TypeAndValue )
and
( this.type = that.type )
and
( this.value = that.value )

)
)

}
... // Spec and check left out

Figure 4.8: Alloy model for TypeAndValue Class.

method for both the this and that receiver resolve to the same method object, this call is not

expanded and treated as a new field valueComparable. A manual inspection of the code also

revealed that getValueComparable() apart from depending on the value field also depends

on other fields (binary and valueCaseSensitive). An Alloy model for this class is shown in

Figure 4.8 and a counterexample is shown in Figure 4.9. The counter example shows for

three objects of type TypeAndValue(int type, int value, int valueComparable): a(6, -8, -3),

b(6, -8, -5) and c(6, -4, -5), a.equals(b) is true and b.equals(c) is true but a.equals(c) is not
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Figure 4.9: Counter example for transitive property.

final class NotifierArgs {
int mask;
String name;
SearchControls controls;

public boolean equals(Object obj) {
if (obj instanceof NotifierArgs) {

NotifierArgs target = (NotifierArgs)obj;
return mask == target.mask && name.equals(target.name)
&& filter.equals(target.filter) && checkControls(target.controls);

}
return false;

}

private boolean checkControls(SearchControls ctls) {
if ((controls == null || ctls == null)) {

return ctls == controls;
}
return (controls.getSearchScope() == ctls.getSearchScope()) &&

... // Other state comparison between controls and ctls;
}

}

Figure 4.10: Equals implementation of NotifierArgs Class.

true.

The checker has reported a transitive property violation in 10 type hierarchies in JDK

1.5, 1 in Tomcat 6 and 1 in Lucene. Upon a manual inspection of these reported problems,

we found 2 false positive in JDK 1.5 and 1 in Lucene.

False Positives

Sometimes the abstraction of code does not match its real behavior due to the limitation

of pattern detection algorithms. In such a scenario chances of getting a false alarm also

increases. For instance, let’s consider the com.sun.jndi.ldap.NotifierArgs class from JDK

1.5 shown in Figure 4.10.
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The NotifierArgs class holds necessary information for an event registration or de-

registration request in an LDAP server. This class composes the javax.naming.directory

.SearchControls class which is responsible for determining scope and return value of a search.

SearchControls, however, does not have an equals method implemented on it. The equals

method of NotifierArgs performs regular state checking on the mask, name and filter fields.

When it comes to comparing controls, NotiferArgs has to define its own method for the

task. This is done in checkControls method where first true-returning path check if both

the controls are null. The second true-returning path checks if this.controls is null and the

third path checks if that.controls is null followed by searchScope and other state comparison

in both the second and third path. Nevertheless, the checker cannot classify the null check-

ing pattern as a valid null checking pattern because the logic is in the combination of both

if and return statements. In such a scenario, null checking is ignored and Alloy generates

this.controls == that.controls for the first path. Furthermore, in Alloy model we represent a

state comparison as a field comparison of composing class and not of composed class. This

is because all fields in Alloy are represented as integer and require abstraction of multi-level

composition into a single level. Hence, the translation of this.controls.getSearchScope() in

Alloy becomes this.controls searchScope. Assuming that mask, name and filter are com-

pared in all three paths, we present a modified version of the generated Alloy model to

show how the transitive property gets violated as shown in Figure 4.113.

abstract sig Object { }
sig NotifierArgs extends Object {

controls : Int,
controls_searchScope : Int,

}
pred Object :: equals( that: Object ) {
( this in NotifierArgs ) =>
(( that in NotifierArgs ) and ( this.controls = that.controls ))
or
(( that in NotifierArgs ) and ( this.controls_searchScope = that.controls_searchScope ))
or
(( that in NotifierArgs ) and ( this.controls_searchScope = that.controls_searchScope ))

}
... // Spec and Check bloc left out

Figure 4.11: Modified alloy model for NotifierArgs Class.

3Note that we are ignoring mask, name and filter comparison assuming they are compared in all paths.
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Figure 4.12: Counter example for transitive property.

Figure 4.12 shows the counterexample generated by Alloy. However, in real life this

never happens because the logic is sound where either both this.controls and that.controls

are null or both are not null and have equal states. This abstracts to this.controls and

that.controls being equal in all paths in real life. Hence, the false positive here is because

of imprecise abstraction of actual code behavior.

4.5.4 Unguarded null parameter

The equals contract specifies that an equals method must return false if the parameter passed

to the method is null. We found several cases in the equals method where this condition is

not checked. For instance, let’s consider the equals method of org.apache.lucene.search

.function.ValueSourceQuery from Lucene 3.0.

public boolean equals(Object o) {
if (getClass() != o.getClass()) { return false; }
ValueSourceQuery other = (ValueSourceQuery)o;

... // Rest of the code

}

The call to the equals method will result in a NullPointerException if o is null when

the o.getClass() method in the first line is invoked. We found 20 such cases in JDK 1.5

and 6 cases in Lucene 3.0. The solution to this problem is to guard the parameter with a

null check (ie. if(o == null) return false;) before dereferencing parameter o.
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4.5.5 Probable ClassCastException

The equals method usually contains a type checking guard before casting the Object type pa-

rameter to another type. If such a guard is not present or an improper guard is present then

a ClassCastException is thrown if the parameter is of incompatible type to the cast type. For

instance, let’s consider the org.apache.lucene.analysis.tokenattributes.PayloadAttributeImpl

class in Lucene 3.0:

public class PayloadAttributeImpl extends AttributeImpl implements PayloadAttribute ... {
public boolean equals(Object other) {
if (other == this) { return true; }
if (other instanceof PayloadAttribute) {
PayloadAttributeImpl o = (PayloadAttributeImpl) other;

... // Rest of the code

} ...

}
}

The PayloadAttributeImpl class implements the PayloadAttribute interface which is also

used in instanceof type checking. However, the PayloadAttribute interface is also imple-

mented by the org.apache.lucene.analysis.Token class. If an object of PalyloadAttributeImpl

is compared to an object of Token class, a ClassCastException will be thrown. We found

18 cases of similar problems in JDK 1.5 and 2 cases in Lucene 3.0.

4.5.6 Similarity implementation for equality

Equals methods in most cases are designed to compare objects within the same type hierar-

chy. Nevertheless, this does not prevent programmers from going beyond the type hierarchy

for equality comparison. Furthermore, all of the non-primitive types are subtypes of the

java.lang.Object class in Java and can be considered as falling within the type hierarchy

of the Object class. In that respect, special care must be taken for adapter pattern [22]

where the equals method of adapter delegates equality comparison to the equals method of

the adaptee which can potentially cause a symmetric property violation. For instance, lets

consider the equals method of the com.sun.corba.se.impl.orbutil.RepIdDelegator class from
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JDK 1.5:

public final class RepIdDelegator implements ... {
// RepositoryId does not belong to type hierarchy of RepIdDelegator

private RepositoryId delegate;

public boolean equals(Object obj) {
if (delegate != null) return delegate.equals(obj);

else return super.equals(obj);

}
}

The RedIdDelegator class has a delegate field of type com.sun.corba.se.impl.util.RepositoryId

and the comparison delegate.equals(obj) compares an object of RepositoryId with RedIdDel-

egator. However, RepositoryId does not implement the equals method. Hence, an object

of RepIdDelegator may be equal to an object of RepositoryId but the opposite is not true.

This may lead to a symmetric property violation. Liskov et. al. classify such an equal-

ity comparison as similarity comparison and proposes to implement a separate similarity

method [30]. A proper implementation of a similarity pattern in JDK 1.5 can be found

in the java.lang.String class where instead of implementing similarity logic in the equals

method, the String class defines the boolean contentEquals(java.lang.StringBuffer) method

to compare similarity between String and StringBuffer.

private static final class XDouble {
private double value;

public boolean equals(Object val) {
...
XDouble oval = (XDouble)val;
...
if (value != value && oval.value != oval.value) return true;
return false;

}
}

Figure 4.13: Equals implementation of the XDouble class.

4.5.7 State comparison on same object

In general, state comparison is done between the this and that object. We found some re-

dundant state comparisons where this.field is compared to this.field and/or that.field is com-

pared to that.field. For instance, let’s consider the com.sun.org.apache.xerces.internal.impl
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.dv.xs.DoubleDV.XDouble class from JDK 1.5 shown in Figure 4.13.

In the code snippet, this.value is compared to this.value and oval.value is compared to

oval.value which we believe should have been this.value compared to oval.value. We found

3 cases of similar comparison in JDK 1.5.

4.5.8 Equals overloading for similarity

We have found several instances of the adapter pattern [22] in JDK 1.5 that adapts the equals

method of the adaptee in the adapter and overloads equals for checking similarity between

adapter and adaptee. This may cause a symmetric property violation. For instance, let’s

consider the sun.security.x509.AlgorithmId (Adapter) and sun.security.util.ObjectIdentifier

(Adaptee) classes. The AlgorithmId class overloads its equals method to be comparable

to both AlgorithmId objects and ObjectIdentifier objects. ObjectIndentifier, on the other

hand, has no idea about the AlgorithmId class:

// AlgorithmId class

public class AlgorithmId implements ... {
public AlgorithmId(ObjectIdentifier oid) { // oid to be wrapped }
public boolean equals(Object other) { ... // For Object }
public boolean equals(AlgorithmId other) { ... // For AlgorithmId }
public final boolean equals(ObjectIdentifier id) { ... // For ObjectIdentifier }

}

final public class ObjectIdentifier implements ... {
public ObjectIdentifier (String oid) throws IOException { ... // Constructor }
public boolean equals(Object other) { ... // For Object }
public final boolean equals(ObjectIdentifier id) { ... // For ObjectIdentifier }

}

In such situation, a comparison between object of AlgorithmId and ObjetIdentifier may

introduce symmetric property violation as follows:

ObjectIdentifier oid = new ObjectIdentifier("1.23.34.45.56");

AlgorithmId aid = new AlgorithmId(oid);

aid.equals(oid); // Returns true

oid.equals(aid); // Returns false
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Note that this is not because of the problem in the implementation of the boolean

equals(Object) method but because this equals method is shadowed by an overloaded version.

We found 15 cases of such problems in JDK 1.5 mostly in sun.security, sun.tools.tree and

com.sun.org.apache.xpath packages. In Tomcat 6, we found 4 cases of this problem mostly

in the org.apache.jasper.xmlparser and org.apache.tomcat.util.buf packages. The solution

is to change the name of the overloaded equals method to something else and call these

methods when similarity check is needed instead of equality.

4.5.9 Equals overloading without overriding

A class of type T may choose not to override the boolean equals(Object) method but im-

plement its own overloaded version: boolean equals(T). In such scenario, a simple casting of

argument at the call site from type T to an Object type will switch between the overloaded

equality of T to the identity equality of Object that may result in an inconsistent answer.

This may be unsafe if the programmer does not know the details of equality implementation

in the class T. For example, let’s consider java.awt.geom.Area class from JDK 1.5. The Area

class creates an area geometry from the specifed Shape object. The overloaded equals for

Area is as follows:

public class Area implements Shape, Cloneable {
public Area(Shape s) { ... // Takes a shape as parameter to create area geometry }
public boolean equals( Area other) { ... // Logic for comparing Area }

}

Since the parameter of the equals method is of type Area, the equals method of Object

class is not overriden but overloaded. So, for the Object type parameter Object.equals(other)

will be called and for the parameter of type Area, Area.equals(other) will be called. This

results in following inconsistency:

Rectangle rect = new Rectangle(1,1,1,1);

Area area = new Area(rect);

Object object = new Area(rect);

area.equals(object); // returns false because of identity equality of Object class

area.equals((Area)object); // returns true because of value equality of Area class
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A solution to this problem is overriding equals method in Area class with boolean

equals(Object) signature and returning false if parameter is not of type Area instead of

just overloading. Bloch et al. also discourage the use of equals overloading in [10, 11].

We found 22 classes in JDK 1.5 with this problem affecting mostly the sun.tools.tree,

com.sun.org.apache.xpath, sun.security.acl and com.sun.org.apache.xerces packages. In Tom-

cat 6, we found 3 cases of this problem mostly in the org.apache.tomcat.util.buf package.

4.5.10 Type checking on this object

Conventionally, type checking is done on the object supplied in the parameter of the equals

method. Type checking on this object is most probably a typographic error. We found 1

case in JDK 1.5 that type checks the this object instead of that. Upon manual inspection it

turns out to be intentionally done. Nevertheless, as a coincidence, there is another problem

associated with the code. Let’s consider the com.sun.org.apache.xml.internal.utils.synthetic

.reflection.EntryPoint class where all of these happen:

abstract public class EntryPoint implements Member {
public boolean equals(Object obj) {
EntryPoint otherep = null;

if (obj instanceof EntryPoint)

otherep = (EntryPoint) obj;

else if (obj instanceof java.lang.reflect.Constructor || obj instanceof java.lang.reflect.Method)

otherep = (EntryPoint) obj;

return (otherep != null &&

((this instanceof Constructor && otherep instanceof Constructor) ||

(this instanceof Method && otherep instanceof Method &&

this.getName().equals(otherep.getName()))) &&

otherep.getDeclaringClass().equals(declaringclass) &&

otherep.getParameterTypes().equals(parametertypes));

}
}

EntryPoint is an abstract class which has two concrete subclasses, Constructor and

Method, in the same package i.e. com.sun...reflection. Before reaching the this instanceof

Constructor check, the type check of obj in obj instanceof java.lang.reflect.Constructor

followed by type casting to EntryPoint itself may cause a ClassCastException because
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the programmer in this case is confusing the Constructor and Method classes from the

com.sun...reflection package with the same named classes from the java.lang.reflect package

that do not belong to the same type hierarchy. Secondly, the intention of the programmer

is type incompatible equality i.e. both this and that must be of type Constructor or both

be of type Method to be considered equal thus preventing inter-class equality. The explicit

type checking for subtypes couples EntryPoint with all of its subtypes which could have

been avoided simply by a this.getClass() == that.getClass() check. Even though we found

only one case of such a problem, it is clearly an unorthodox type checking pattern and a

potential sign of problem.

4.5.11 Use of non-equal methods on fields

Equals checker is a hierarchy based path analysis tool. We do not expand a method in a

path that does not belong to any of the classes in the type hierarchy of the analysis class.

This also means that we do not expand a method whose receiver object is a member field,

or an array element of a member field or a return value of a member function which we

collectively call as states of objects being compared. If we find a comparison between fields

that is done not using an equals method or operators other than == or !=, we report such

a comparison as a warning. Here, we are relying on the assumption that the equals method

of non hierarchy objects are implemented correctly. We found a few cases in JDK 1.5 where

neither equals method or == or != operator were used for comparing fields. Lets consider

sun.security.x509.GeneralName as an example:

public boolean equals(Object other) {
if (this == other) { return true; }
if (!(other instanceof GeneralName)) return false;

GeneralNameInterface otherGNI = ((GeneralName)other).name;

try {
return name.constrains(otherGNI) == GeneralNameInterface.NAME_MATCH;

} catch (UnsupportedOperationException ioe) { return false; }
}
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The comparison name.constrains(otherGNI)==GeneralNameInterface.NAME MATCH

is too specific for the checker to generalize as a valid state comparison. We were expecting

name.equals(otherGNI) comparison in this case. Hence, we warn users to manually inspect

the code for problems. We found 5 cases of such comparisons in JDK 1.5.

4.5.12 Domain specific map implementation

The pattern detector for map works for a general map equality pattern where the size and

key value mapping of the this and that entry set of both maps are checked for equality.

If a map is implemented not using methods specified in Map interface and mapping not

compared through iterators of entry set and none of the pattern detectors can identify the

comparison logic then such implementations are flagged as potential problems. For instance,

let’s look at the equals method of javax.management.openmbean.TabularDataSupport from

JDK 1.5:

public class TabularDataSupport implements TabularData, Map ... {
public boolean equals(Object obj) {
...

TabularData other;

...

if ( ! this.getTabularType().equals(other.getTabularType()) ) { return false; }
if (this.size() != other.size()) { return false; }
for (Iterator iter = this.values().iterator(); iter.hasNext(); ) {

CompositeData value = (CompositeData) iter.next();

if ( ! other.containsValue(value) ) { return false; }
}
return true;

}
}

TabularDataSupport implements a Map interface to provide tabular data support for the

sun.management.MappedMXBeanType class. Its equality is defined in terms of tabular type,

size of map and containment of values. The equality logic, however, lacks a key to value

mapping check which is a necessary condition for a regular map comparison pattern. The

map pattern detector cannot classify the statements in and within the loop to any known
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pattern as it is a domain specific implementation. Such patterns are reported for manual

inspection. We have altogether 5 similar cases including java.util.IdentityHashMap4 from

JDK 1.5.

Note that we also try to isolate domain specific List and Set patterns but could not find

any in the analyzed projects.

4.5.13 Wrapper implementation pattern

The similarity pattern has an equality comparison with a field whose type does not be-

long to any type in the type hierarchy of the class being analyzed. The wrapper pat-

tern is similar to the similarity pattern, the only difference being that the type of the

field belongs to the type hierarchy of the composing class. For instance, let’s consider the

java.util.Collections.SynchronizedList class from JDK 1.5:

static class SynchronizedList<E> extends SynchronizedCollection<E> implements List<E> {
// Adaptee or wrapped object

List<E> list;

SynchronizedList(List<E> list) {
super(list);

this.list = list;

}

public boolean equals(Object o) {
synchronized(mutex) {return list.equals(o);}

}
}

Here, the SynchronizedList class is providing synchronization to the regular List object

passed in the constructor. Essentially, SynchronizedList is adapting the un-synchronized

list for synchronized access. Similarly, the equals method is also adapted to delegate the

equality comparison to the original list by calling list.equals(o). The correctness of the

Wrapper pattern depends on the correctness of the equals method of the wrapped field.

In fact, we have found a symmetric property violation in the List type hierarchy in JDK
4IndentityHashMap is known to have symmetric property violation with other regular maps also shown

in Section 2.2.1.
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1.5 that may affect the equivalence relation between SychronizedList and other Lists in the

type hierarchy. We have found 15 cases of the wrapper implementation pattern in JDK

1.5. Note that we identify the wrapper pattern to inform users for probable problems and

for manual inspection because we do not expand methods on fields and it is hard to reason

about the correctness of an equals of a field object without proper expansion.

4.5.14 Overloaded equals method with overriding

The equals method has a very special purpose of comparing equality between two objects.

Overloading the equals method for multiple purposes often leads to violation of the equals

contract. The checker has reported 71 cases of equals overloading among which two of the

categories have been discussed in Sections 4.5.8 and 4.5.9 that are potentially problematic.

The less problematic case is the one when both overloading and overriding of the equals

method is done. Upon manual inspection of these cases, we coincidentally found symmetric

property violations in some of the classes. Consider com.sun.java cup.internal.lr item core

and com.sun.java cup.internal.lalr item in the java cup package:

public class lr_item_core {
public lr_item_core(production prod) { ... // Constructs LR item from production }
public boolean equals(Object other) {
if (!(other instanceof lr_item_core)) return false;

else return equals((lr_item_core)other);

}
// Overloaded equals

public boolean equals(lr_item_core other) { return core_equals(other); }
}
public class lalr_item extends lr_item_core {

public boolean equals(Object other) {
if (!(other instanceof lalr_item)) return false;

else return equals((lalr_item)other);

}
}
public boolean equals(lalr_item other) { // Overloaded equals method

if (other == null) return false;

return super.equals(other);

}
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For same production an lr item core object may be equal to lalr item but the opposite

may not be true because of the type checking in lalr item.equals(Object):

production p = ... // A production

lr_item_core lr = new lr_item_core(p);

lalr_item lalr = new lalr_item(p);

lr.equals(lalr); // Returns true

lalr.equals(lr); // Returns false

We found 2 type hierarchies in the java cup packages totalling 6 classes that are associ-

ated with this violation. There are totally 43 cases of overloading with overriding in JDK

1.5

4.5.15 Path generation reaching cut-off limit

Path explosion is one major hurdle for a path based analysis. The equals method with a big

body and multiple control flow branches can create path explosion. After experimenting

with several limiting numbers for the total number of paths per equals method, we have

decided upon a maximum path size limit of 500. If a path generation reaches 500 paths

for an equals method, we will stop further expansion and report such a case for manual

inspection. This limit does not affect detectable patterns for the checker for all the three

projects. An example of a case where expansion reached the cutoff limit is the equals method

of the com.sun.org.apache.xerces.internal.jaxp.datatype.XMLGregorianCalendarImpl class.

But because of its big size we are not presenting it here. We have altogether 11 cases from

JDK 1.5 that reached this cutoff limit. Upon manual inspection of each case we figured

they have complicated comparison logic that will anyway fall in the Unknown Code Patterns

section that is discussed in Section 4.6. Nevertheless, the ability to expand 687 out of 698

equals methods ( 98.42 %) in JDK 1.5 and all of the equals methods in Lucene 3.0 and

Tomcat 6 shows that path-based analysis can be a useful machinery for program analysis.
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4.6 Unknown Code Patterns

We started off by thinking of the equals method as a simple method containing a type

checking block followed by a state checking block where two fields or methods are compared

using a standard relational operator like == or using standard methods like equals or

compareTo. This assumption worked well enough for the projects like Lucene, Tomcat 6

and most of JDK 1.5. However, when it came down to JDK 1.5 whose source code is

contributed by many programmers of varying skills and coding styles, we did find some

interesting equals implementations that surprised our checker. In this section, we will

present several categories of such implementations and classify them as supportable after

some plumbing or not supportable due to fundamental problem in the logic of the checker’s

implementation. Table 4.5 summarizes our manual analysis of unknown code patterns. A

complete list of unknown code patterns can be found in Appendices D and E.

Description JDK 1.5 Lucene 3.0 Tomcat 6
Supportable Patterns

Use of a field to represent an array length 13 2 0
Use of an array as a set 3 0 0
Multi-Dimensional array equality pattern 1 0 0
Collection operations on field 13 2 0
Handling data ow of boolean type 7 0 0
Control dependency 3 0 0
Total supportable patterns 40 4 0

Un-supportable Patterns
Domain specific representation on array 6 1 0
Domain specific representation on field 9 1 0
Comparison delegated to a field 9 0 0
Polymorphic field 2 0 0
Creation of new state for equality 11 0 0
Wrapped state Comparison 2 0 0
Domain specific equality 1 0 0
Total un-supportable patterns 40 2 0
Total supportable and un-supportable 80 6 0

Table 4.5: Summary of unknown code patterns.
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4.6.1 Use of a field to represent an array’s length

In the array pattern, we expect array.length to be used for checking the array’s bounds. In

the absence of such a bound check we do not consider such a code pattern as a valid array

pattern. For instance, let’s consider java.net.Inet6Address class from JDK 1.5:

public final class Inet6Address extends InetAddress {
final static int INADDRSZ = 16;

byte[] ipaddress; // 16 bytes IPv6 address

public boolean equals(Object obj) {
if (obj == null || !(obj instanceof Inet6Address)) return false;

Inet6Address inetAddr = (Inet6Address)obj;

for (int i = 0; i < INADDRSZ; i++) {
if (ipaddress[i] != inetAddr.ipaddress[i]) return false;

}
return true;

}
}

The for loop in the code snippet compares a sentinel i to a constant INADDRSZ in-

stead of ipaddress.length. Even though the code has a sequential array element comparison

required for a valid array pattern, it is lacking size check and bound check to be classified

as a valid array pattern. It is justified to use this constant in this case because the pro-

grammer of the code knows that IPv6 requires 16 bytes and the ipaddress array is exactly

that size all the time for any object of Inet6Address. Nevertheless, the checker does not

know of such an implicit assumption. It assumes that if ipaddress.length is not used for

bound check then an IndexOutOfBoundException might be thrown thus breaking the equals

method implementation and hence reports as unknown code pattern. We found 13 cases in

JDK 1.5 and 2 cases in Lucene that use another field to represent the length of an array

field. If we add comparison of sentinel with a member field as a valid bound check pattern

and in its presence relax the size check constraint then we will be able to support all 13

cases as a valid array pattern by the checker.
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4.6.2 Use of an array as a set

We have implemented the array equality pattern to detect sequential element comparison

and implemented the set equality pattern to detect bidirectional containment relation for

subtypes of java.util.Set. Nevertheless, we found cases in JDK 1.5 that use array for set

representation. Let’s consider a code segment from the java.security.CodeSource class as

follows:

private boolean matchCerts(CodeSource that, boolean strict) {
...

boolean match;

...

{
for (int i = 0; i < certs.length; i++) {

match = false;

for (int j = 0; j < that.certs.length; j++) {
if (certs[i].equals(that.certs[j])) { match = true; break; }

}
if (!match) return false;

}
return true;

}
...

}

The code is taken from the matchCerts(CodeSource that) method that is called from

equals and returns true if all of the certificates(an array of java.security.cert.Certificate

objects) in this.certs are also present in the that.certs object. It is possible to extend the

array pattern detector to detect this pattern and classify it as a set pattern. The conditions

we will be looking for are bound check on this.certs, bound check in that.certs, element

comparisons that involve sentinels from both this.certs.length and that.certs.length bound

checks and finally this.certs and that.certs element comparison. We found 3 cases of such

patterns in JDK 1.5.
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4.6.3 Multi-Dimensional array equality pattern

The arrays equality pattern considers only one dimensional sequences for comparison. We

have found one case in JDK 1.5 that checks for equality of a 2 dimensional arrays or matrix.

It is possible to extend one dimensional array comparison to a matrix equality pattern while

enforcing similar constraints of one dimension array equality to both dimensions. The code

snippet for matrix comparison of the com.sun.corba.se.impl.ior.StubIORImpl class is as

follows:

public class StubIORImpl {
private byte[][] profileData;

public boolean equals(java.lang.Object obj) {
...

StubIORImpl other = (StubIORImpl)obj;

...

return ... && equalArrays( profileData, other.profileData );

}

// For each row check column equals by calling equalArrays([],[])

private boolean equalArrays( byte[][] data1, byte[][] data2 ) {
if (data1.length != data2.length) return false ;

for (int ctr=0; ctr<data1.length; ctr++) {
if (!equalArrays( data1[ctr], data2[ctr] )) return false ;

}
return true ;

}

// Regular array comparison

private boolean equalArrays( byte[] data1, byte[] data2 ) {
if (data1.length != data2.length) return false ;

for (int ctr=0; ctr<data1.length; ctr++) {
if (data1[ctr] != data2[ctr]) return false ;

}
return true ;

}
}

The equals method in the code calls the equalsArray([][],[][]) method that compares

two matrices. The comparison of columns for both matrices inside equalsArray([][],[][]) is

further delegated to the equalsArray([],[]) method which is a regular array equality pattern.
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4.6.4 Collection operations on field

We hoped that the equals method while comparing a collection type field (List, Map, Set)

would do so by using its well-defined equals method. Nevertheless, some of the classes in

JDK 1.5 implemented equals by re-inventing the wheel. Let us look at the equals imple-

mentation of the javax.naming.ldap.LdapName class from JDK 1.5:

public class LdapName implements Name {
private transient ArrayList rdns;

public boolean equals(Object obj) {
...

LdapName that = (LdapName)obj;

...

if (rdns.size() != that.rdns.size()) { return false; }
...

// Compare RDNs one by one for equality

for (int i = 0; i < rdns.size(); i++) {
Rdn rdn1 = (Rdn) rdns.get(i);

Rdn rdn2 = (Rdn) that.rdns.get(i);

if (!rdn1.equals(rdn2)) { return false; }
}
return true;

}
}

The field rdns is an ArrayList and instead of simply comparing this.rdns.equals(that.rdns),

the equals method of LdapName re-implements the logic of the equivalence relation for List.

The checker expects such logic only in subtypes of java.util.List and for either the this or

that object but not for fields. Nevertheless, it will be able to handle this by first relaxing

the constraint that the list pattern can not only happen on this or that receiver objects

but also on their fields. Second, the implementation is closer to the array equality pattern

where array reference is replaced by an rdns.get(i) call. Hence, updating the list pattern

to also accommodate the array pattern with the get(int) call will do the job. We found a

similar implementation for Maps and Enumeration type fields. All of these can be handled

either by improving the existing pattern detector for list, map and set patterns to work also

on fields or in the case of Enumeration write a new pattern detector and represent the Enu-
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meration pattern by abstracting as a field of the set type in the Alloy model. Altogether,

13 cases of such implementations were found in JDK 1.5 and 2 cases were found in Lucene

3.0.

4.6.5 Handling data flow of boolean type

The checker performs in-place evaluation of conditional expressions like == or != in a

statement whenever possible. For example, let us consider a null checking pattern that

follows:

if(this.field == null && that.field == null) return true;

The conjunction of two conditional expression in the if statement is equivalently trans-

lated into two if statements in Jimple, each containing one conditional expression. So,

an in-place evaluation of the conditional expression in each if statement can detect that

this.field and that.field are being compared to a null constant. But this does not work

all the time. Sometimes the programmer uses clever programing tricks that require further

processing. For instance, in the java.beans.PropertyDescriptor class, the equals method del-

egates a null checking pattern for two state objects of type Method to the compareMethod

method:

boolean compareMethods(Method a, Method b) {
if ((a == null) != (b == null)) { return false; }
if (a != null && b != null) {
if (!a.equals(b)) { return false; }

}
return true;

}

In the code snippet, after the if((a == null) != (b == null)) statement falls through,

either both a and b are null or both are not null which is a valid null checking pattern.

For a true returning path, the null checking expression must evaluate to false and the

control must fall through. The checker needs to evaluate the two conditional expression

operands followed by the != operator in conjunction with the branching behavior of the
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if statement to successfully detect such a pattern as a null checking pattern. Similarly,

another interesting and repeating null checking pattern found in JDK 1.5 is the use of the

xor operator. For instance, the equals method of the java.rmi.dgc.VMID class uses the xor

operation to perform null checking:

public boolean equals(Object obj) {
if (obj instanceof VMID) {
VMID vmid = (VMID) obj;

...

if ((addr == null) ^ (vmid.addr == null)) return false;

if (addr != null) { ... // State comparison logic}
return true;

} else { return false; }
}

In the code snippet, after the xor statement is executed and control does not branch to

the return false; statement, the addr and vmid.addr fields are either both null or both not

null. Besides evaluation of the conditional expression associated with == and !=, we also

need to evaluate boolean expressions associated with xor. So far, an in-place processing

of the relational expression was enough to handle expressions like this.field == that.field,

that.field == null, etc. But now, because of such null checking patterns we need an expres-

sion evaluation analysis on a data flow of boolean type to successfully handle such patterns.

Altogether, 7 cases of similar null checking patterns were found in JDK 1.5.

4.6.6 Control dependency

It is generally useful to keep debug code snippets along with the real code. When this is

done, a global flag is used to either enable or disable the debug code. For instance, the

equals method of javax.security.auth.PrivateCredentialPermission class through intermedi-

ate method calls reaches the impliesCredentialClass(String, String) method, that has debug

code with a testing field flag as switch to enable or disable printing of debug information

(Figure 4.14).

Here, the check for testing the field does not contribute in any way to the equivalence

relation and can be ignored. Hence, we need a control dependency analysis that can isolate
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private boolean impliesCredentialClass(String thisC, String thatC) {
...
if (testing)
System.out.println("credential class comparison: " + thisC + "/" + thatC);

...
}

Figure 4.14: Implementation of the impliesCredentialClass() method.

the comparisons that contribute to the return value and ignore all those that do not. We

found 3 cases of similar patterns in JDK 1.5.

4.6.7 Domain specific representation on array

The array equality pattern checks if two arrays are equal as a whole ie. the size of two

arrays must be equal, elements contained in them must be equal and in the same order.

We have found some cases in JDK 1.5 where array comparison is not done in full and that

have some domain specific semantics. For instance, let’s consider the java.util.BitSet class:

public class BitSet implements ... {
private long bits[];

private transient int unitsInUse = 0;

public boolean equals(Object obj) {
...

BitSet set = (BitSet) obj;

// Get minimum bits used by both this and that

int minUnitsInUse = Math.min(unitsInUse, set.unitsInUse);

for (int i = 0; i < minUnitsInUse; i++)

if (bits[i] != set.bits[i]) return false;

// Check any bits in use by only one BitSet (must be 0 in other)

if (unitsInUse > minUnitsInUse) {
for (int i = minUnitsInUse; i<unitsInUse; i++)

if (bits[i] != 0) return false;

} else {
for (int i = minUnitsInUse; i<set.unitsInUse; i++)

if (set.bits[i] != 0) return false;

}
return true;

}

The number of bits used by each BitSet is defined by the unitsInUse field. So, a minimum

on this.unitsInUse and set.unitsInUse will give the bit length that is used by both. The
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public class CMStateSet {
public boolean equals(Object o) {
if (!(o instanceof CMStateSet)) return false;
return isSameSet((CMStateSet)o);

}
final boolean isSameSet(CMStateSet setToCompare) {
if (fBitCount != setToCompare.fBitCount) return false;
if (fBitCount < 65) {

return ((fBits1 == setToCompare.fBits1) && (fBits2 == setToCompare.fBits2));
}
for (int index = fByteCount - 1; index >= 0; index--) {

if (fByteArray[index] != setToCompare.fByteArray[index]) return false;
}
return true;

}
}

Figure 4.15: Equals of the CMStateSet class.

first for-loop checks if the bit value matches for both this and set for the common used

length. If that matches, the following if and else block just check whether the extra used

bits either on this or set are disabled. If an excess bit is not disabled then two bit sets will

not be equal.

The bit array in this case has a domain specific representation and is not general enough

to be supported by the checker. The checker expects bits[i] != set.bits[i] instead of a bits[i]

!= 0 comparison. Instead of a bit array of long, it could have been a char array and instead

of checking for a specific value like 0 for excess bits, a character A could have been used

and abstraction of such a pattern would be difficult if not impossible. We found 6 cases

of varying domain specific representations in array fields from JDK 1.5 and 1 case from

Luence 3.0 that are not supported by the checker.

4.6.8 Domain specific representation on field

The Alloy model for state comparison abstracts the type of state being compared to an

integer type and expects this.state compared to that.state using equality operators (== or

!=) or equality methods (equals or compareTo). Given such a scenario, if a field is not

compared between this and that objects, the checker cannot translate it to Alloy code. For

instance, let’s consider the com.sun.org.apache.xerces.internal.impl.dtd.models.CMStateSet

class from JDK 1.5 in Figure 4.15.

The CMStateSet class is a lightweight version of the java.util.BitSet class. Its equals
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method calls the isSameState method where states of this and that are compared. The CM-

StateSet class, however, has two internal representation: one for bit length less than or equal

to 64 bits and another for greater than 64. The if statement with the fBitCount < 65 con-

dition just switches between the representation to be used for equality comparison. However,

the checker does not know of this domain specific comparison and expects this.fBitCount

to be compared to that.fBitCount either with the == or != operator. Hence, due to the

field comparison with a constant and use of the non equality operator, the checker cannot

translate it to an Alloy code. We have altogether 9 similar cases in JDK 1.5 and 1 case in

Lucene 3.0 that are not supported by the checker.

4.6.9 Comparison delegated to a field

The equals checker is a hierarchy based analysis tool. We only expand method calls on

this or that object but not on fields. When the helper method for equality comparison is

implemented on a field, such a call cannot be expanded. For instance let’s consider the

equals method of java.io.File class from JDK 1.5:

public class File implements Serializable, Comparable<File> {
static private FileSystem fs = FileSystem.getFileSystem();

public boolean equals(Object obj) {
if ((obj != null) && (obj instanceof File)) {
return compareTo((File)obj) == 0;

}
return false;

}

public int compareTo(File pathname) {
return fs.compare(this, pathname);

}
}

In the code snippet, the equals method delegates equality comparison to the compareTo

method. Inside the compareTo method this and that (pathname) objects are passed to

the compare method of static filed fs of type FileSystem. The fs field represents a local

operating system specific file system in which two files are compared for equality. The
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checker, however, does not expand the fs.compare method and cannot reason about its

correctness. We have 9 similar cases from JDK 1.5 that are not supported by the checker.

4.6.10 Polymorphic field

Sometimes, a type of field is not concrete and is abstracted as an Object type. This intro-

duces polymorphism in the possible types for a field. In such a scenario, the field is type

checked inside the equals method before performing relevant comparison. For instance, let’s

consider the com.sun.jndi.ldap.SimpleClientId class from JDK 1.5:

class SimpleClientId extends ClientId {
final private String username;

final private Object passwd;

public boolean equals(Object obj) {
...

SimpleClientId other = (SimpleClientId) obj;

return (... && ((passwd == other.passwd)

|| (passwd != null && other.passwd != null &&

(

((passwd instanceof String) && passwd.equals(other.passwd)) ||

((passwd instanceof byte[]) && (other.passwd instanceof byte[]) &&

Arrays.equals((byte[]) passwd, (byte[]) other.passwd)) ||

((passwd instanceof char[]) && (other.passwd instanceof char[]) &&

Arrays.equals((char[]) passwd, (char[]) other.passwd))

)));

}
}

SimpleClientId represents an identity of an authenticated LDAP connection. This class

supports authentication through username and password represented by the username and

passwd field. The field username is by default String type however the class relaxes the

type constraint on the passwd field by making it Object type. Inside the equals method,

the runtime type of passwd is checked before calling the appropriate equality method. In

this case, the types of fields are limited to be either String, byte[] or char[] arrays. Since

the checker abstracts the type of field to be an integer type in the Alloy model, such type

checking statements cannot be translated to Alloy. We have 2 similar cases not supported
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by the checker from JDK 1.5.

4.6.11 Creation of new state for equality

A state in an equals method is generally compared between this and that without any mod-

ification. If a state is modified by creating a new local state either by cloning or by instanti-

ating a new local object through a parametrized constructor, then the checker cannot reason

about such comparison. For instance, let’s consider the sun.security.x509.KeyIdentifier class

where cloning is used:

public class KeyIdentifier {
private byte[] octetString;

public byte[] getIdentifier() { return ((byte[])octetString.clone()); }

public boolean equals(Object other) {
if (this == other) return true;

if (!(other instanceof KeyIdentifier)) return false;

return java.util.Arrays.equals(octetString, ((KeyIdentifier)other).getIdentifier());

}
}

In the code snippet, the this.octetString byte array is compared to the clone of other.octetString.

Cloning may create a new local object and cloned objects are not necessarily equal. Hence,

such comparison where this.octetString is compared to a cloned local array is not handled

by the checker. Nevertheless, for this particular problem we found cloning unnecessary

because Arrays.equals([],[]) does not mutate its parameters.

Another example where a new operator is used along with a parameterized constructor

to create a new local object for comparison can be found in the javax.security.auth.Subject

class from JDK 1.5 shown in Figure 4.16.

The principals field in the class is a synchronized set as we can see in the constructor. If

a mere comparison of this.principals.equals(that.principals) was done in the equals method

instead of the above code snippet then there was a possibility of a deadlock. This may

happen when this.pricipals and that.principals have different mutex variables (or locks) and

two threads are simultaneously trying to perform an equality check on principals; one doing
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public class SslRMIServerSocketFactory implements RMIServerSocketFactory {
Set principals;
public Subject() { this.principals = Collections.synchronizedSet(...); ... }

public boolean equals(Object o) {
final Subject that = (Subject)o;
Set thatPrincipals;
synchronized(that.principals) {
// avoid deadlock from dual locks
thatPrincipals = new HashSet(that.principals);

}
if (!principals.equals(thatPrincipals)) { return false; }
...

}
}

Figure 4.16: Equals of the SslRMIServerSocketFactory class.

this.principal.equals(that.principal) and the other doing that.principal.equals(this.principal).

To avoid deadlock due to this dual lock, the that.principals field is un-synchronized by ini-

tializing a new local HashSet object out of it. The un-synchronized HashSet(thatPrincipals

in the code snippet) is then compared to this.principals which is effectively comparing the

value of both sets for equality. Due to the equality comparison of this.principals with the

new local object, the checker cannot translate such a coding pattern to Alloy. In fact, it

does not know if thatPrincipals is semantically equal to that.principals. We have 11 similar

cases from JDK 1.5 that is not supported by the checker.

4.6.12 Wrapped state Comparison

private static class CheckedEntry<K,V> implements Map.Entry<K,V> {
private Map.Entry<K, V> e;

public boolean equals(Object o) {
if (!(o instanceof Map.Entry)) return false;
Map.Entry t = (Map.Entry)o;
return eq(e.getKey(), t.getKey()) && eq(e.getValue(), t.getValue());

}
}
// Defined in Collections class
private static boolean eq(Object o1, Object o2) {

return (o1==null ? o2==null : o1.equals(o2));
}

Figure 4.17: Equals of the CheckedEntry class.

The wrapper pattern has already been explained in Section 4.5.13. Sometimes instead

of performing wrapped.equals(that), some specific field of the wrapped object are used for

state comparison. For instance, let’s consider the java.util.Collections.CheckedMap
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.CheckedEntrySet.CheckedEntry class from JDK 1.5 (Figure 4.17).

In the code snippet, key and value of the wrapped object e are compared instead of

comparing wrapped object e with o with e.equals(o) as in the regular Wrapper pattern.

There are altogether 2 similar cases in JDK 1.5 that are not supported by the checker.

4.6.13 Domain specific equality

It is good to check if this and that represent the same physical address by performing a

this == that check which is called identity or reference equality. We have found a case

in JDK 1.5 where this is compared to a constant object in the equals method. It’s in the

java.security.spec.ECPoint class:

public class ECPoint {
public static final ECPoint POINT_INFINITY = new ECPoint();

private final BigInteger x;

private final BigInteger y;

// private constructor for constructing point at infinity

private ECPoint() {
this.x = null;

this.y = null;

}

public boolean equals(Object obj) {
if (this == obj) return true;

if (this == POINT INFINITY) return false;

if (obj instanceof ECPoint) {
return ((x.equals(((ECPoint)obj).x)) && (y.equals(((ECPoint)obj).y)));

}
return false;

}
}

The ECPoint class represents a point in an elliptic curve in an affine coordinate system.

The default constructor creates a point at infinity represented by both coordinates x and y

set to null. The POINT INFINITY constant is instantiated to represent a point at infinity.

When it comes to performing the equality check for such an object, it makes sense to make it
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Description Tomcat 6 Lucene 3.0 JDK 1.5
Equals search 5s (22%) 4s (12%) 1m 7s (10%)
Hierarchy construction <1s (3%) 2s (6%) 21s (3%)
Path generation 2s (9%) 2s (7%) 3m 12s (29%)
Alloy model generation 13s (52%) 6s (19%) 5m 20s (49%)
Alloy model checking 3s (12%) 18s (53%) 41s (6%)
Total time 25s 33s 10m 42s

Table 4.6: Summary of execution time.

not equal to everything else. This is a very domain specific implementation for non-equality

and is not supported by the checker.

4.6.14 Execution Time

Table 4.6 shows the time taken for each phase in the analysis of the three projects. The

machine used for analyses is a MacBookPro Laptop with a 2.4 GHz Intel Core 2 Duo

processor and 2 GB of main memory. The Java Virtual Machine was given 800 MB of

minimum, and 1024 MB of maximum memory through the Eclipse IDE for analysis. Our

experiments also confirmed that the minimum memory of 400 MB worked for Lucene and

Tomcat, and 600 MB for JDK. The Eclipse IDE itself used about 250 MB.

The performance data looks very promising, indicating that this technique can scale

up to a project as large as JDK 1.5, and, thus, can probably be used on a daily basis on

a developer’s desktop. In general, the checker has a time and space trade-off: the more

the memory, the faster the analysis. With less memory, the checker resets Soot more often

before loading a type hierarchy, introducing time overhead.
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Chapter 5

Related Work

5.1 Equals Design and Implementations

Liskov and Guttag suggest to use reference equality for mutable objects and value equality

for immutable objects [30]. For example, an IntSet in their work uses reference equality. In

contrast, many data types in Java Collection Framework [9] employ value based equality.

In fact, Java’s specification for equals(), in particular, the consistency rule, is more relaxed

and allows a mutable class to define equals(). The tradeoff is that the developer must ensure

that the consistency rule is obeyed throughout his application.

When a type-compatible equality is implemented between a supertype and a subtype,

their equals() conform to LSP. When two types implement a type-incompatible equality or a

hybrid equality, they may violate LSP if specifications other than the default equals contract

are assumed. Some (e.g., Bloch [10]) suggest to use composition instead of inheritance in

such cases. We believe that type-incompatible equality should not be the main reason for

two classes to not have a subtyping relation, and that it can still be useful for two types to

subtype each other when their equals() violate LSP. In contrast to [10], the hybrid equality

shows that it is possible to extend an instantiable class and add an aspect while preserving

the equals contract.

The implementation for the hybrid equality essentially uses a template method design
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pattern [22]. Use of the template method design pattern for implementing equals() has also

been proposed by Cohen [12, 40] and later by Stevenson and Phillips [41]. Our work is

broader than theirs in that we provide a set of guidelines that is aimed to cover all of the

relevant design and implementation considerations. Unlike the analytical work in [12, 41],

we conducted an empirical study with real-life projects, with findings that both validate

and enrich our guidelines. Furthermore, our design and implementation of hybrid equality

appears to be simpler than theirs and can be more familiar to programmers for a quick

start.

Baker [7] attempts to define a semantics model for object equality in the context of Lisp.

However, the goal seems to be to completely implement equality at the programming lan-

guage level. We believe that equality is domain-specific and requires developer involvement

in its definition.

5.2 Automated equals() Code Generation

Vaziri et al. [45] extend Java with relation types with which equality can be specified in

terms of object properties and the equals() implementation can be generated automati-

cally. However, the relation types neither take into account the Object’s behaviors for

equality comparison, nor support type-compatible and hybrid equality (the generated im-

plementation uses getClass() only). Therefore, it would help solve only a subset of equals()

implementation issues.

IDEs such as Eclipse [17] and NetBeans [35] have wizards that generate equals(). Net-

Beans 6.8 allows for only getClass() and fails to include the state of a superclass into the

equals() of a subclass. Eclipse 3.5 gives a developer an option to choose from instanceof

and getClass() but does not support the implementation of hybrid equality.

Rayside et al. use annotations to specify an abstract view of an object’s representation

that helps to automatically generate equals() code [36]. They use Java Collection Frame-

work as one of their benchmarks where they modify existing source code to add relevant

annotations. Our approach does not change existing source code. We have several pattern
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detectors that automatically detect the abstraction functions in the implementation of the

equals() method thus reducing an extra burden on the programmer. Furthermore, it is not

clear from the paper if they can automatically generate all of the different equals implemen-

tation patterns that our detector can handle. One simple example is the equals() method

of the org.apache.lucene.search.Query class from Apache Lucene 3.0:

public abstract class Query implements ... {
private float boost = 1.0f; // query boost factor

public boolean equals(Object obj) {
if (this == obj) return true;

if (obj == null) return false;

if (getClass() != obj.getClass()) return false;

Query other = (Query) obj;

if (Float.floatToIntBits(boost) != Float.floatToIntBits(other.boost)) return false;

return true;

}
}

Float.floatToIntBits() returns an integer representation of the float value according to

the IEEE 754 floating-point single format bit layout. We found 38 sub types of Query

class that directly or indirectly rely on such state check pattern where instead of checking

the field directly, the equals() method checks certain properties of the field for equality. It

is unclear how 5 different annotations presented in their paper can handle such equality

patterns. Furthermore, it is also not clear how a hybrid equality pattern can be generated

using these annotations.

5.3 Program Analysis and Comprehension

Soot provides a 3-address based intermediate representation of Java code called Jimple [44].

Jimple is also a stack-less representation and has a smaller number of instructions to be

handled than Java bytecode. Nevertheless, its flow-analysis framework is built on top of

intra-procedure control-flow graphs that do not suffice our need. We extend Soot to provide

an inter-procedure path-based flow analysis framework. Path-based analysis, in general, is
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more precise than flow graph analysis as flow sets do not have to be merged in a path. Flow

graphs based program analyses, have to merge flow sets when two control flow branches

meet together, thus, introducing inaccuracy.

Closely related work to our inter-procedure analysis is pointer analysis. A very simple

approach to pointer analysis is not to use context information at all. Steensgaard proposes

an efficient pointer analysis algorithm which is context insensitive, flow insensitive, unifica-

tion based. Spark [29] points to analysis framework that comes with Soot is also inclusion

based. Similarly, Whale and Lam propose field-sensitive (object and its field are treated

as different memory locations) and intra-procedure flow sensitive analyses [46]. Our inter-

procedure analysis is context and flow sensitive. Since, our approach is path sensitive as

well, we can query for pointer alias with respect to a path, thus, getting a more accurate

answer. Other context sensitive but flow insensitive analyses can be found in [21, 19].

A flow-insensitive but object-sensitive analysis is proposed by Milanova et al. [34]. In

their approach, a method is analyzed separately for each of the object names that represent

run-time objects on which that method may be invoked. Like their approach we also analyze

methods that may be invoked on this or that receiver objects but we have flow-sensitivity

in our analyses that they do not have.

Shivers proposes k-CFA where only k call sites are remembered for limiting the number

of contexts in control flow analysis [39]. This is typically useful for recursive calls. We

expand a recursive call only once which is conceptually similar to [18]. Furthermore, our

context sensitivity is clone-based, similar to [18, 47]. But, unlike [47] we have flow-sensitivity

at all points in a path. The key difference between all of the mentioned analyses and ours is

that we apply inter-procedure analysis for a specific problem domain, i.e. equals() method

checking. Hence, our entry method is not a main() method or a Thread.run() method but

an equals() method. Furthermore, the equals() method generally does not initialize new

objects, instead, it has logic for object comparisons. Hence, our pointer analysis is more

like a reference sensitive analysis where we query which local variable points to the this

object or a field of the this object (or parameter of the equals() method). Nevertheless, we
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can also answer an initialization related query if an object is initialized at a reachable point

from the equals() method.

All of the inter-procedure analyses need an access to a call graph generally with main()

or Thread.run() methods as an entry method. For instance, [46, 47] needs access to pre-

computed call graphs. Like [19] we do not require a pre-computed call graph and evaluate

on-the-fly targets. We run context-senstive type analysis on the receiver object along with a

class hierarchy analysis [14] to compute possible dispatch targets. Since, our entry method

is equals(), chances are the object is not initialized in its paths. In such scenarios, we rely

on the type checking statements (use of instanceof, getClass(), type casting, etc) within the

program body for better precession. In fact, our type checking filter significantly prunes

invalid paths during path generation (see Section 4.3).

An intra-procedurally path-sensitive and summary-based, context-sensitive program

analysis framework is developed for C in [3]. This framework is extended in [15] to evaluate

several system constraints inter-procedurally. An example of such a constraint is null pointer

dereferencing in C. In a modular program analysis (program analyzed in several parts), they

introduce a concept of unobservable variable for values that are not known statically. They

model such a variable in terms of existential quantifiers which we do through domain spe-

cific abstraction whenever possible. Das et al. propose a path-sensitive program verification

tool called ESP [13] for the C language. Their approach is similar to ours in a way that

their path based analysis is governed by domain semantics. They try to track only relevant

branches pertaining to the property to be checked which they also call inter-procedural

property simulation.

Automatic code recognition has been a challenge for program comprehension for a long

time. Johnson and Soloway have developed a framework called PROUST for on-line analysis

and understanding of Pascal programs written by novice programmers [28]. They take

program requirements as an input, identify several functional units in the program and a

set of plans to be executed while writing the program. They check if the plans have been

successfully executed by determining the correctness of the functional units. Our functional
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units are the comparison patterns that we check for correctness.

Seemann and Gudenberg propose a pattern-based design recovery technique using call

graphs [38]. They are primarily interested in detecting design patterns related to inheritance

and composition. We also, for instance, detect Adapter patterns in the equals() code by

investigating the method call site and composing the type of the receiver object (e.g. field,

this, that, etc). Their approach of relying on some well-defined name for abstraction is

similar to us. For instance, we do not expand the int hashCode() method. However,

our pattern detectors are not limited to names, inheritance or composition. We perform

abstraction at several levels, variable name, composite statement(s) (combination of one

or more statements and their execution sequence to denote certain comparisons like array

patterns), inheritance where we look for subtypes of collection interfaces for particular

patterns (e.g. List, Set and Map). Hence, we look at both structural as well as behavioral

properties in code to perform abstraction at various level. A query by outlines paradigm is

introduced by Balmas in a prototype tool called QBO [8]. It can answer queries based on

constraints imposed on an outline model. For instance, a query can be where a variable is

modified? We use flow analysis to accurately answer such questions.

Design and implementation of Alloy models are discussed in details in [27]. However,

the equivalence relation in particular is not discussed. Marinov et al. propose VAlloy (an

extension to Alloy), that models virtual functions [32]. In their work, models of different

Java classes are discussed in VAlloy. We automate the code generation process and directly

generate the code in Alloy. VAlloy code has to be written manually which is then translated

to Alloy and then run for error checking. Nevertheless, the representation of VAlloy is more

compact than Alloy for virtual function modeling.

5.4 Existing Checkers

There are several static checkers available for Java. Among them FindBugs [43] handles

more cases related to equals() than others. It detects 36 equals() related problems most

of which are related to equals() use rather than its implementation. The 4 categories of
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problems that are related to equivalence relation detected by the tool are:

Equals checks for non-compatible operand This is the same as overloading equals im-

plementations for multiple purposes discussed in Section 2.2.2.

Equals method always returns false The tool checks if an equals method always re-

turns false. This will violate the reflexive property of the equivalence relation.

Equals method always returns true In this case the tool checks if an equals method

always returns true. This may violates the symmetric property of the equivalence

relation.

Equals method overrides equals in superclass and may not be symmetric This is

very similar to suspicious implementations of type-incompatible equality discussed in

Section 2.2.3. In particular, FindBugs looks for the instanceof operator in the equals()

method of both the super-type and sub-type to detect symmetric property violations.

This is very unreliable checking and will miss a lot of potential problems that may

occur without the use of the instanceof operator.

FindBugs does not address issues related to hybrid equality or proper implementation of

equals as proposed in our guidelines. It does not detect all of the symmetric and transitive

property violations detected by our checker.

Hou et al. [24, 23] use SCL to specify and detect violation of implementation constraints

for equals() within each individual class, but inheritance is not the focus of that work.

Flanagan et al. propose a model checker for Java that relies on programmers’ anno-

tations for checking constraints [20]. Nevertheless, they do not focus on the equivalence

relation.
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Chapter 6

Conclusion

6.1 Future Work

A very near future work is to extend the checker to handle all of the supportable unknown

code patterns for better code coverage. Our Alloy model mostly focuses on inheritance and

research on providing better support for composition can be another direction. Testing with

VAlloy [32] models can be an alternative.

The SERL Framework is a useful program analysis tool and can have several applica-

tions. One such application can be detecting domain specific constraints on a framework.

We have investigated several scattered concerns for a JTree API in [25]. These concerns are

also common to most of the Java Swing APIs. It is possible to implement pattern detectors

for these concerns and provide suggestions to the programmers when constraints related

to any concern is violated. This will effectively give rise to a dynamic help system for the

programmers that can provide context related expert suggestions for using framework code.

Another direction is to mature a SERL Framework into a demand-driven inter-procedure

path-sensitive context-sensitive analysis framework. Demand-driven in the sense unlike

most other inter-procedure analysis where call graphs are pre-computed, we will provide

APIs for selectively processing method expansion based on heuristics and proper abstrac-

tion.
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6.2 Conclusion

We have shown that the implementation of a seemingly simple method like equals() can

cause many problems. It is a general design problem that also appears in other languages

like C#. Fortunately, its solution goes hand in hand with the established OO design methods

and principles such as behavioral subtyping. In particular, the identification of design intent

for the right equality is crucial for the proper implementation of equals(). Furthermore, our

analysis of several open source projects shows that this contract is widely depend on and it

can be easily implemented improperly. Our analysis of the root causes for equals()-related

problems provides insights and helps create concrete guidelines on things that should be

done and things that should be avoided. These guidelines will be useful not only to software

developers but also tool vendors, since modern IDEs like Eclipse and NetBeans still cannot

generate problem-free equals(). We have further applied these ideas on a model-based static

checker that was able to detect a majority of the problems. Furthermore, documentation

of the cases not supported by the checker will provide a starting point for future research.

In general, it appears to us that the equality design is a representative example for design

extension, a software development style that is increasingly becoming common in frame-

works and other reuse-based development. Proper design extension requires the developers

to possess enough knowledge about the design, who often lack such knowledge and as a

result, write suboptimal code. We plan to investigate design guidelines for other extensible

designs, and to develop tools to better assist the developers in the design extension process.
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Appendix A

Language Specification

Language Specification for Alloy Model in Extended Backus-Naur Form:

<Module> ::=

<ModuleDeclaration>

<TypeDeclarations>

<EqualityPredicate>

<TypeExclusion>

<EquivalenceSpecification>

<ValidityCheck>

<ModuleDeclaration> ::= "" | "module" .+

<TypeDeclarations> ::=

<TypeDeclaration> | <TypeDeclaration> <TypeDeclarations>

<TypeDeclaration> ::=

{ "abstract" | "" } "sig" <Id> <Inheritance> "{" <FieldDeclarations> "}" <FactSpecifications>

<Id> ::= [_A-Za-z][_A-Za-z0-9]*

<Inheritance> ::= "" | "extends" <Id> | "in" <Id>

<FieldDeclarations> ::=

<FieldDeclaration> | <FieldDeclaration> "," <FieldDeclarations>

<FieldDeclaration> ::= <Id> ":" <Type>

<Type> ::= "Int" | "seq Int" | "set Int" | "Int -> Int"
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<FactSpecifications> ::= "" | <FactSpecification> <FactSpecifications>

<FactSpecification> ::= "fact" "{" <Id> "in" <Id> "}"

<EqualityPredicate> ::=

"pred" <Id> "::" "equals" "(" <Id> ":" <Id> ")" "{"
<Implications>

"}"

Implications ::=

<Implication> | <Implication> "else" <Implications>

<Implication> ::=

"(" <Id> "in" <TypeIsolation> ")" "=>" <FactBlocks>

<TypeIsolation> ::= <Id> | <Id> "-" TypeIsolation

<FactBlocks> ::=

<FactBlock> | <FactBlock> "or" <FactBlocks>

<FactBlock> ::=

<Fact> | <Fact> "and" <FactBlock>

<Fact> ::=

<TypeCheck> | "!" <TypeCheck>

| <StateCheck> | "!" <StateCheck>

<TypeCheck> ::= "(" <Id> "in" <TypeIsolation> ")"

<StateCheck> ::=

"(" <Id> "=" <Id> ")"

| "(" <Id>"."<Id> "=" <Id>"."<Id> ")"

<TypeExclusion> ::= <TypeDeclaration>

<EquivalenceSpecification> ::=

"assert reflexive { all a : " <TypeIsolation> "| a.equals[a] }"
"assert symmetric { all a, b : " <TypeIsolation> "| a.equals[b] <=> b.equals[a] }"
"assert transitive { all a, b, c : " <TypeIsolation> "| a.equals[b] and b.equals[c] => a.equals[c] }"
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<ValidityCheck> ::=

"check reflexive for 1"

"check symmetric for 2"

"check transitive for 3"
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Appendix B

Reported Errors

Note that false positives are marked with a *. Also note that @ num means problematic

pattern starts at num line number.

Reflexive Property Violation

JDK 1.5

1. com.sun.tools.javac.util.Paths.PathIterator

2. java.net.InetAddress

3. sun.management.MappedMXBeanType.InProgress

4. com.sun.jmx.snmp.IPAcl.GroupImpl*

5. javax.management.openmbean.OpenMBeanParameterInfoSupport*

Symmetric Property Violation

JDK 1.5

1. java.util.AbstractList (Root of type hierarchy)

• com.sun.corba.se.spi.ior.IdentifiableContainerBase

• com.sun.corba.se.impl.ior.iiop.IIOPProfileTemplateImpl

2. com.sun.jmx.snmp.IPAcl.PrincipalImpl

• com.sun.jmx.snmp.IPAcl.GroupImpl
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• com.sun.jmx.snmp.IPAcl.GroupImpl

3. com.sun.org.apache.xerces.internal.xni.QName

• com.sun.org.apache.xerces.internal.xni.QName

• com.sun.org.apache.xerces.internal.impl.dv.xs.QNameDV.XQName

4. com.sun.security.auth.NTSid

• com.sun.security.auth.NTSid

• com.sun.security.auth.NTSidUserPrincipal

5. com.sun.tools.apt.mirror.declaration.DeclarationImpl

• com.sun.tools.apt.mirror.declaration.ParameterDeclarationImpl

• com.sun.tools.apt.mirror.declaration.ClassDeclarationImpl

6. java.awt.geom.Rectangle2D

• java.awt.geom.Rectangle2D.Double

• javax.swing.text.DefaultCaret

7. javax.imageio.ImageTypeSpecifier

• javax.imageio.ImageTypeSpecifier.Grayscale

• javax.imageio.ImageTypeSpecifier.Banded

8. javax.management.MBeanOperationInfo

• javax.management.MBeanOperationInfo

• javax.management.openmbean.OpenMBeanOperationInfoSupport

9. javax.naming.RefAddr

• javax.naming.StringRefAddr

• javax.naming.BinaryRefAddr

10. javax.security.auth.kerberos.ServicePermission

• javax.security.auth.kerberos.ServicePermission

• javax.security.auth.kerberos.ServicePermission

Lucene 3.0
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1. org.apache.lucene.search.Query (Root of type hierarchy)

• org.apache.lucene.search.spans.SpanNearQuery

• org.apache.lucene.search.payloads.PayloadNearQuery

Tomcat 6

1. java.util.AbstractMap (Root of type hierarchy)

• org.apache.catalina.tribes.tipis.ReplicatedMap

• java.util.concurrent.ConcurrentHashMap

Transitive Property Violation

JDK 1.5

1. java.util.AbstractList (Root of type hierarchy)

• com.sun.corba.se.impl.ior.FreezableList

• java.util.concurrent.CopyOnWriteArrayList.COWSubList

2. com.sun.jmx.snmp.IPAcl.PrincipalImpl

• com.sun.jmx.snmp.IPAcl.GroupImpl

• com.sun.jmx.snmp.IPAcl.GroupImpl

3. com.sun.jndi.ldap.LdapName.TypeAndValue

• com.sun.jndi.ldap.LdapName.TypeAndValue

• com.sun.jndi.ldap.LdapName.TypeAndValue

4. com.sun.jndi.ldap.NotifierArgs*

• com.sun.jndi.ldap.NotifierArgs

• com.sun.jndi.ldap.NotifierArgs

5. com.sun.org.apache.xerces.internal.xni.QName

• com.sun.org.apache.xerces.internal.xni.QName

• com.sun.org.apache.xerces.internal.impl.dv.xs.QNameDV.XQName

6. com.sun.tools.apt.mirror.declaration.DeclarationImpl

• com.sun.tools.apt.mirror.declaration.ParameterDeclarationImpl
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• com.sun.tools.apt.mirror.declaration.TypeParameterDeclarationImpl

7. java.util.ResourceBundle.ResourceCacheKey*

• java.util.ResourceBundle.ResourceCacheKey

• java.util.ResourceBundle.ResourceCacheKey

8. javax.imageio.ImageTypeSpecifier

• javax.imageio.ImageTypeSpecifier.Packed

• javax.imageio.ImageTypeSpecifier.Banded

9. javax.management.MBeanOperationInfo

• javax.management.MBeanOperationInfo

• javax.management.openmbean.OpenMBeanOperationInfoSupport

10. javax.naming.RefAddr

• javax.naming.StringRefAddr

• javax.naming.BinaryRefAddr

11. javax.security.auth.kerberos.ServicePermission

• javax.security.auth.kerberos.ServicePermission

• javax.security.auth.kerberos.ServicePermission

12. sun.security.x509.X500Name

• sun.security.x509.X500Name

• sun.security.x509.X500Name

Lucene 3.0

1. org.apache.lucene.search.function.FieldCacheSource* (Root of type hierar-

chy)

• org.apache.lucene.search.function.IntFieldSource

• org.apache.lucene.search.function.IntFieldSource

Tomcat 6

1. java.util.AbstractMap (Root of type hierarchy)
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• org.apache.catalina.tribes.tipis.LazyReplicatedMap

• java.util.concurrent.ConcurrentHashMap

Unguarded null parameter

JDK 1.5

1. com.sun.java.util.jar.pack.Package.File[@ 711]

2. com.sun.org.apache.xalan.internal.xsltc.compiler.FunctionCall.JavaType[@ 154]

3. com.sun.org.apache.xalan.internal.xsltc.compiler.VariableRefBase[@ 75]

4. com.sun.org.apache.xml.internal.dtm.ref.DTMNodeProxy[@ 121]

5. com.sun.org.apache.xml.internal.utils.CharKey[@ 82]

6. com.sun.org.apache.xpath.internal.objects.XString[@ 436]

7. com.sun.org.apache.xpath.internal.objects.XStringForFSB[@ 436]

8. java.awt.Font.Key[@ 663]

9. java.beans.ReflectionUtils.Signature[@ 279]

10. sun.security.x509.X509CertImpl[@ 1802]

11. sun.security.x509.X509CRLImpl[@ 1087]

12. java.util.Calendar[@ 2272]

13. sun.font.FontLineMetrics[@ 79]

14. sun.font.GlyphLayout.SDCache.SDKey[@ 266]

15. sun.rmi.rmic.iiop.CompoundType.Method[@ 1826]

16. sun.rmi.rmic.iiop.Type[@ 401]

17. sun.security.jgss.GSSNameImpl[@ 244]

18. sun.security.x509.X509Key[@ 427]

19. sun.swing.BakedArrayList[@ 66]

20. sun.text.IntHashtable[@ 77]

Lucene 3.0

1. org.apache.lucene.search.function.CustomScoreQuery[@ 140]
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2. org.apache.lucene.search.function.OrdFieldSource[@ 104]

3. org.apache.lucene.search.function.ReverseOrdFieldSource[@ 114]

4. org.apache.lucene.search.function.ValueSourceQuery[@ 182]

5. org.apache.lucene.spatial.geometry.FixedLatLng[@ 148]

6. org.apache.lucene.spatial.geometry.FloatLatLng[@ 131]

Probable ClassCastException

JDK 1.5

1. com.sun.java.util.jar.pack.ConstantPool.ClassEntry[@ 325]

2. com.sun.java.util.jar.pack.ConstantPool.DescriptorEntry[@ 363]

3. com.sun.java.util.jar.pack.ConstantPool.MemberEntry[@ 422]

4. com.sun.java.util.jar.pack.ConstantPool.NumberEntry[@ 258]

5. com.sun.java.util.jar.pack.ConstantPool.SignatureEntry[@ 493]

6. com.sun.java.util.jar.pack.ConstantPool.StringEntry[@ 293]

7. com.sun.java.util.jar.pack.ConstantPool.Utf8Entry[@ 203]

8. com.sun.java.util.jar.pack.Package.File[@ 710]

9. com.sun.java.util.jar.pack.Package.InnerClass[@ 884]

10. com.sun.org.apache.xerces.internal.impl.dtd.XMLDTDDescription[@ 151]

11. com.sun.org.apache.xml.internal.utils.CharKey[@ 82]

12. java.awt.Font.Key[@ 662]

13. java.beans.ReflectionUtils.Signature[@ 278]

14. java.text.DecimalFormat[@ 1865]

15. java.text.PatternEntry[@ 56]

16. java.text.RuleBasedCollator[@ 732]

17. java.text.SimpleDateFormat[@ 1842]

18. sun.rmi.rmic.iiop.CompoundType.Method[@ 1824]

19. sun.rmi.rmic.iiop.Type[@ 401]
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20. sun.swing.BakedArrayList[@ 63]

Lucene 3.0

1. org.apache.lucene.analysis.tokenattributes.PayloadAttributeImpl[@ 78]

Similarity for Equality

JDK 1.5

1. com.sun.corba.se.impl.orbutil.RepIdDelegator[@ 143]

2. com.sun.corba.se.impl.orbutil.RepIdDelegator 1 3[@ 147]

3. com.sun.corba.se.impl.orbutil.RepIdDelegator 1 3 1[@ 147]

4. com.sun.org.apache.xalan.internal.xsltc.compiler.FunctionCall.JavaType[@ 154]

5. com.sun.org.apache.xml.internal.utils.XMLStringDefault[@ 185]

6. com.sun.org.apache.xml.internal.utils.synthetic.reflection.Field[@ 94]

7. com.sun.org.apache.xpath.internal.Arg[@ 232]

8. com.sun.org.apache.xpath.internal.objects.XString[@ 431]

9. com.sun.org.apache.xpath.internal.objects.XStringForFSB[@ 425]

10. com.sun.security.auth.X500Principal[@ 137]

11. java.awt.RenderingHints[@ 648]

12. org.ietf.jgss.Oid[@ 144]

13. sun.tools.jconsole.inspector.XTree.Token[@ 599]

State comparison on same object

JDK 1.5

1. com.sun.org.apache.xerces.internal.impl.dv.xs.DoubleDV.XDouble[@ 125]

2. com.sun.org.apache.xerces.internal.impl.dv.xs.FloatDV.XFloat[@ 125]

3. java.net.SocketPermission[@ 824]

Equals overloading for similarity
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JDK 1.5

1. com.sun.org.apache.xerces.internal.xni.XMLString

2. com.sun.org.apache.xpath.internal.objects.XStringForFSB

3. com.sun.tools.corba.se.idl.Token

4. java.awt.datatransfer.DataFlavor

5. sun.tools.jar.JarVerifierStream.CertCache

6. sun.tools.tree.BooleanExpression

7. sun.tools.tree.ConvertExpression

8. sun.tools.tree.DoubleExpression

9. sun.tools.tree.Expression

10. sun.tools.tree.FloatExpression

11. sun.tools.tree.IdentifierExpression

12. sun.tools.tree.IntegerExpression

13. sun.tools.tree.LongExpression

14. sun.tools.tree.NullExpression

15. sun.tools.tree.StringExpression

Tomcat 6.0

1. org.apache.jasper.xmlparser.XMLString

2. org.apache.tomcat.util.buf.ByteChunk

3. org.apache.tomcat.util.buf.CharChunk

4. org.apache.tomcat.util.buf.MessageBytes

Equals overloading without overriding

JDK 1.5

1. com.sun.corba.se.impl.io.ValueUtility.IdentityKeyValueStack.KeyValuePair

2. com.sun.jmx.snmp.agent.SnmpIndex

3. com.sun.org.apache.xerces.internal.impl.xs.identity.IdentityConstraint
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4. com.sun.org.apache.xerces.internal.impl.xs.util.XInt

5. com.sun.org.apache.xerces.internal.xni.XMLString

6. com.sun.org.apache.xml.internal.dtm.ref.ExtendedType

7. com.sun.org.apache.xpath.internal.objects.XBoolean

8. com.sun.org.apache.xpath.internal.objects.XBooleanStatic

9. com.sun.org.apache.xpath.internal.objects.XNodeSet

10. com.sun.org.apache.xpath.internal.objects.XNull

11. com.sun.org.apache.xpath.internal.objects.XNumber

12. com.sun.org.apache.xpath.internal.objects.XObject

13. com.sun.org.apache.xpath.internal.objects.XRTreeFrag

14. com.sun.tools.corba.se.idl.Token

15. java.awt.geom.Area

16. sun.font.StandardGlyphVector.GlyphTransformInfo

17. sun.security.acl.AllPermissionsImpl

18. sun.security.jgss.krb5.Krb5NameElement

19. sun.tools.jar.JarVerifierStream.CertCache

20. sun.tools.tree.BooleanExpression

21. sun.tools.tree.ConvertExpression

22. sun.tools.tree.DoubleExpression

23. sun.tools.tree.Expression

24. sun.tools.tree.FloatExpression

25. sun.tools.tree.IdentifierExpression

26. sun.tools.tree.IntegerExpression

27. sun.tools.tree.LongExpression

28. sun.tools.tree.NullExpression

Tomcat 6.0

143



1. org.apache.jasper.xmlparser.XMLString

2. org.apache.tomcat.util.buf.ByteChunk

3. org.apache.tomcat.util.buf.CharChunk

4. org.apache.tomcat.util.buf.MessageBytes

This reference type test

JDK 1.5

1. com.sun.org.apache.xml.internal.utils.synthetic.reflection.EntryPoint[@ 169]
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Appendix C

Reported Warnings

Note that false positives are marked with a *. Also note that @ num means problematic

pattern starts at num line number.

Use of non-equals method on field

JDK 1.5

1. com.sun.java.util.jar.pack.ConstantPool.ClassEntry[@ 325]

2. com.sun.java.util.jar.pack.ConstantPool.DescriptorEntry[@ 364]

3. com.sun.java.util.jar.pack.ConstantPool.MemberEntry[@ 423]

4. com.sun.java.util.jar.pack.ConstantPool.StringEntry[@ 293]

5. com.sun.org.apache.xerces.internal.impl.dtd.XMLDTDDescription[@ 155]

6. java.awt.datatransfer.DataFlavor[@ 886]

7. java.rmi.server.RemoteObject[@ 122]

8. sun.security.x509.GeneralName[@ 177]

Domain specific map implementation

JDK 1.5

1. com.sun.tools.jdi.LinkedHashMap[@ 711]

2. java.util.Collections.EmptyMap[@ 3025]
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3. java.util.EnumMap[@ 607]

4. java.util.IdentityHashMap[@ 624]

5. javax.management.openmbean.TabularDataSupport[@ 628]

Wrapper implementation pattern

JDK 1.5

1. com.sun.management.GcInfo[@ 227]

2. java.util.Collections.CheckedList[@ 2413]

3. java.util.Collections.CheckedMap[@ 2567]

4. java.util.Collections.CheckedSet[@ 2310]

5. java.util.Collections.SynchronizedList[@ 1809]

6. java.util.Collections.SynchronizedMap[@ 2020]

7. java.util.Collections.SynchronizedSet[@ 1657]

8. java.util.Collections.UnmodifiableList[@ 1152]

9. java.util.Collections.UnmodifiableMap[@ 1320]

10. java.util.Collections.UnmodifiableSet[@ 1067]

11. java.util.jar.Attributes[@ 254]

12. javax.print.attribute.AttributeSetUtilities.SynchronizedAttributeSet[@ 328]

13. javax.print.attribute.AttributeSetUtilities.UnmodifiableAttributeSet[@ 117]

14. sun.management.LazyCompositeData[@ 42]

Tomcat 6.0

1. org.apache.catalina.tribes.tipis.AbstractReplicatedMap.MapEntry[@ 1317]

2. org.apache.jasper.el.JspMethodExpression[@ 82]

3. org.apache.jasper.el.JspValueExpression[@ 112]

Equals overloading with overriding

JDK 1.5
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1. com.sun.corba.se.spi.ior.iiop.GIOPVersion

2. com.sun.java.util.jar.pack.Attribute.Layout

3. com.sun.java.util.jar.pack.Instruction

4. com.sun.java cup.internal.action part

5. com.sun.java cup.internal.lalr item

6. com.sun.java cup.internal.lalr item set

7. com.sun.java cup.internal.lalr state

8. com.sun.java cup.internal.lr item core

9. com.sun.java cup.internal.nonassoc action

10. com.sun.java cup.internal.parse action

11. com.sun.java cup.internal.production

12. com.sun.java cup.internal.production part

13. com.sun.java cup.internal.reduce action

14. com.sun.java cup.internal.shift action

15. com.sun.java cup.internal.symbol part

16. com.sun.java cup.internal.symbol set

17. com.sun.java cup.internal.terminal set

18. com.sun.org.apache.xml.internal.dtm.ref.DTMNodeProxy

19. com.sun.org.apache.xml.internal.utils.XMLStringDefault

20. com.sun.org.apache.xpath.internal.objects.XString

21. com.sun.org.apache.xpath.internal.objects.XStringForFSB

22. java.awt.DisplayMode

23. java.awt.MenuShortcut

24. java.awt.datatransfer.DataFlavor

25. java.awt.font.FontRenderContext

26. java.awt.font.ImageGraphicAttribute
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27. java.awt.font.ShapeGraphicAttribute

28. java.awt.font.TextHitInfo

29. java.awt.font.TextLayout

30. java.sql.Timestamp

31. sun.font.CoreMetrics

32. sun.font.StandardGlyphVector

33. sun.security.acl.GroupImpl

34. sun.security.jgss.GSSNameImpl

35. sun.security.jgss.ProviderList.PreferencesEntry

36. sun.security.util.BigInt

37. sun.security.util.DerInputBuffer

38. sun.security.util.DerValue

39. sun.security.util.ObjectIdentifier

40. sun.security.x509.AlgorithmId

41. sun.security.x509.X509Cert

42. sun.security.x509.X509CertInfo

43. sun.tools.tree.StringExpression

Lucene 3.0

1. org.apache.lucene.spatial.geometry.shape.Vector2D

Tomcat 6.0

1. org.apache.el.ValueExpressionLiteral

Path generation reaching cut-off

JDK 1.5

1. com.sun.jndi.dns.DnsName

2. com.sun.org.apache.xerces.internal.jaxp.datatype.DurationImpl
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3. com.sun.org.apache.xerces.internal.jaxp.datatype.XMLGregorianCalendarImpl

4. com.sun.org.apache.xerces.internal.util.URI

5. com.sun.org.apache.xml.internal.utils.URI

6. com.sun.security.auth.SubjectCodeSource

7. java.awt.Font

8. java.net.URI

9. java.security.UnresolvedPermission

10. java.text.DateFormatSymbols

11. javax.management.openmbean.OpenMBeanInfoSupport
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Appendix D

Supportable Unknown Code

Patterns

Use of a field to represent an array length

JDK 1.5

1. com.sun.jmx.snmp.SnmpOid

2. java.awt.image.ColorModel

3. java.awt.image.ComponentColorModel

4. java.awt.image.PackedColorModel

5. java.lang.String

6. java.net.Inet6Address

7. java.text.DigitList

8. sun.awt.robot.ScreenCapture

9. sun.text.CompactByteArray

10. sun.text.CompactCharArray

11. sun.text.CompactIntArray

12. sun.text.CompactShortArray

13. sun.security.util.BitArray
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Lucene 3.0

1. org.apache.lucene.analysis.Token

2. org.apache.lucene.index.Payload

Use of an array as a set

JDK 1.5

1. java.security.AccessControlContext

2. java.security.CodeSource

3. sun.security.provider.SelfPermission

Multi-Dimensional array equality pattern

JDK 1.5

1. com.sun.corba.se.impl.ior.StubIORImpl

Collection operations on field

JDK 1.5

1. com.sun.corba.se.impl.ior.ObjectAdapterIdArray

2. com.sun.jndi.ldap.LdapName

3. com.sun.jndi.ldap.LdapName.Rdn

4. java.awt.datatransfer.MimeTypeParameterList

5. java.net.NetworkInterface

6. javax.management.openmbean.CompositeDataSupport

7. javax.naming.NameImpl

8. javax.naming.directory.BasicAttributes

9. javax.naming.ldap.LdapName

10. javax.naming.ldap.Rdn

11. javax.print.attribute.HashAttributeSet
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12. javax.swing.text.StyleContext.SmallAttributeSet

13. sun.security.pkcs.PKCS10Attributes

Lucene 3.0

1. org.apache.lucene.search.MultiPhraseQuery

2. org.apache.lucene.search.spans.SpanOrQuery

Handling data flow of boolean type

JDK 1.5

1. java.beans.IndexedPropertyDescriptor

2. java.beans.PropertyDescriptor

3. java.net.InetSocketAddress

4. java.rmi.dgc.VMID

5. java.security.Identity

6. sun.rmi.transport.tcp.TCPEndpoint

7. sun.util.calendar.CalendarDate

Control dependency

JDK 1.5

1. com.sun.jmx.snmp.IPAcl.NetMaskImpl

2. javax.security.auth.PrivateCredentialPermission

3. sun.security.jgss.GSSCredentialImpl
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Appendix E

Unsupportable Unknown Code

Patterns

Domain specic representation on array

JDK 1.5

1. com.sun.jlex.internal.SparseBitSet

2. java.text.ChoiceFormat

3. java.text.MessageFormat

4. java.util.BitSet

5. com.sun.jmx.snmp.IPAcl.PrincipalImpl

6. javax.swing.text.TabSet

Lucene 3.0

1. org.apache.lucene.util.OpenBitSet

Domain specic representation on field

JDK 1.5

1. com.sun.corba.se.impl.naming.pcosnaming.InternalBindingKey

2. com.sun.corba.se.impl.naming.cosnaming.InternalBindingKey
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3. com.sun.org.apache.xerces.internal.impl.dtd.models.CMStateSet

4. com.sun.org.apache.xerces.internal.impl.dv.xs.DecimalDV.XDecimal

5. com.sun.org.apache.xerces.internal.impl.xs.traversers.XSDHandler.XSDKey

6. java.util.EnumMap.EntryIterator

7. java.util.IdentityHashMap.EntryIterator

8. java.util.SimpleTimeZone

9. javax.naming.directory.BasicAttribute

Lucene 3.0

1. org.apache.lucene.util.AttributeSource

Comparison delegated to a field

JDK 1.5

1. com.sun.org.apache.xerces.internal.impl.dv.xs.

AbstractDateTimeDV.DateTimeData

2. com.sun.tools.apt.mirror.type.TypeMirrorImpl

3. com.sun.tools.javac.code.Types.SingletonType

4. com.sun.tools.javac.code.Types.TypePair

5. java.io.File

6. java.net.URL

7. java.util.jar.Attributes.Name

8. javax.rmi.CORBA.Stub

9. org.omg.CORBA.portable.ObjectImpl

Polymorphic field

JDK 1.5

1. com.sun.jndi.ldap.DigestClientId

2. com.sun.jndi.ldap.SimpleClientId
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Creation of new state for equality

JDK 1.5

1. javax.rmi.ssl.SslRMIServerSocketFactory

2. javax.security.auth.Subject

3. sun.reflect.generics.reflectiveObjects.ParameterizedTypeImpl

4. sun.security.provider.certpath.CertId

5. sun.security.x509.CRLExtensions

6. sun.security.x509.CertificateExtensions

7. sun.security.x509.IPAddressName

8. sun.security.x509.KeyIdentifier

9. sun.security.x509.OtherName

10. java.util.GregorianCalendar

11. sun.util.BuddhistCalendar

Wrapped state Comparison

JDK 1.5

1. java.util.Collections.CheckedMap.CheckedEntrySet.CheckedEntry

2. java.util.Collections.UnmodifiableMap.UnmodifiableEntrySet.

UnmodifiableEntry

Domain specic equality

JDK 1.5

1. java.security.spec.ECPoint
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